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Zusammenfassung
Diese Arbeit befasst sich mit der Approximation der Lösungen von Modellen zur Be-

schreibung des Strömungsverhaltens in Atmosphären. Im Speziellen umfassen die hier be-
handelten Modelle die kompressiblen Euler Gleichungen der Gasdynamik mit einem Quell-
term bezüglich der Gravitation und die Flachwassergleichungen mit einem nicht konstan-
ten Bodenprofil. Verschiedene Methoden wurden bereits entwickelt um die Lösungen dieser
Gleichungen zu approximieren. Im Speziellen geht diese Arbeit auf die Approximation von
Lösungen nahe des Gleichgewichts und, im Falle der Euler Gleichungen, bei kleinen Mach
Zahlen ein. Die meisten numerischen Methoden haben die Eigenschaft, dass die Qualität
der Approximation sich mit der Anzahl der Freiheitsgrade verbessert. In der Praxis wer-
den deswegen diese numerischen Methoden auf großen Computern implementiert um eine
möglichst hohe Approximationsgüte zu erreichen. Jedoch sind auch manchmal diese großen
Maschinen nicht ausreichend, um die gewünschte Qualität zu erreichen. Das Hauptaugen-
merk dieser Arbeit ist darauf gerichtet, die Qualität der Approximation bei gleicher Anzahl
von Freiheitsgrade zu verbessern.

Diese Arbeit ist im Zusammenhang einer Kollaboration zwischen Prof. Klingenberg des
Mathemaitschen Instituts in Würzburg und Prof. Röpke des Astrophysikalischen Instituts in
Würzburg entstanden. Das Ziel dieser Kollaboration ist es, Methoden zur Berechnung von
stellarer Atmosphären zu entwickeln. In dieser Arbeit werden vor allem zwei Problemstellun-
gen behandelt. Die erste Problemstellung bezieht sich auf die akkurate Approximation des
Quellterms, was zu den so genannten well-balanced Schemata führt. Diese erlauben genaue
Approximationen von Lösungen nahe des Gleichgewichts. Die zweite Problemstellung be-
zieht sich auf die Approximation von Strömungen bei kleinen Mach Zahlen. Es ist bekannt,
dass Lösungen der kompressiblen Euler Gleichungen zu Lösungen der inkompressiblen Eu-
ler Gleichungen konvergieren, wenn die Mach Zahl gegen null geht. Klassische numerische
Schemata zeigen ein stark diffusives Verhalten bei kleinen Mach Zahlen. Das hier entwickel-
te Schema fällt in die Kategorie der asymptotic preserving Schematas, d.h. das numerische
Schema ist auf einem diskrete Level kompatibel mit dem auf dem Kontinuum gezeigten ver-
halten. Zusätzlich wird gezeigt, dass die Diffusion des hier entwickelten Schemas unabhängig
von der Mach Zahl ist.

In Kapitel 3 wird ein HLL approximativer Riemann Löser für die Approximation der
Lösungen der Flachwassergleichungen mit einem nicht konstanten Bodenprofil angewendet
und ein well-balanced Schema entwickelt. Die meisten well-balanced Schemata für die Flach-
wassergleichungen behandeln nur den Fall eines Fluids im Ruhezustand, die so genannten
Lake at Rest Lösungen. Hier wird ein Schema entwickelt, welches sich mit allen Gleichge-
wichten befasst. Zudem wird eine zweiter Ordnung Methode entwickelt, welche im Gegensatz
zu anderen in der Literatur nicht auf einem iterativen Verfahren basiert. Numerische Expe-
rimente werden durchgeführt um die Vorteile des neuen Verfahrens zu zeigen.

In Kapitel 4 wird ein Suliciu Relaxations Löser angepasst um die hydrostatischen Gleichge-
wichte der Euler Gleichungen mit einem Gravitationspotential aufzulösen. Die Gleichungen
der hydrostatischen Gleichgewichte sind unterbestimmt und lassen deshalb keine Eindeu-
tigen Lösungen zu. Es wird jedoch gezeigt, dass das neue Schema für eine große Klasse
dieser Lösungen die well-balanced Eigenschaft besitzt. Für bestimmte Klassen werden Qua-
draturformeln zur Approximation des Quellterms entwickelt. Es wird auch gezeigt, dass das
Schema robust, d.h. es erhält die Positivität der Masse und Energie, und stabil bezüglich
der Entropieungleichung ist. Die numerischen Experimente konzentrieren sich vor allem auf
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den Einfluss der Quadraturformeln auf die well-balanced Eigenschaften.
In Kapitel 5 wird ein Suliciu Relaxations Schema angepasst für Simulationen im Bereich

kleiner Mach Zahlen. Es wird gezeigt, dass das neue Schema asymptotic preserving und die
Diffusion kontrolliert ist. Zudem wird gezeigt, dass das Schema für bestimmte Parameter
robust ist. Eine Stabilität wird aus einer Chapman-Enskog Analyse abgeleitet. Resultate
numerische Experimente werden gezeigt um die Vorteile des neuen Verfahrens zu zeigen.

In Kapitel 6 werden die Schemata aus den Kapiteln 4 und 5 kombiniert um das Verhal-
ten des numerischen Schemas bei Flüssen mit kleiner Mach Zahl in durch die Gravitation
geschichteten Atmosphären zu untersuchen. Es wird gezeigt, dass das Schema well-balanced
ist. Die Robustheit und die Stabilität werden analog zu Kapitel 5 behandelt. Auch hier wer-
den numerische Tests durchgeführt. Es zeigt sich, dass das neu entwickelte Schema in der
Lage ist, die Dynamiken besser Aufzulösen als vor der Anpassung.

Das Kapitel 7 beschäftigt sich mit der Entwicklung eines multidimensionalen Schemas
basierend auf der Suliciu Relaxation. Jedoch ist die Arbeit an diesem Ansatz noch nicht
beendet und numerische Resultate können nicht präsentiert werden. Es wird aufgezeigt, wo
sich die Schwächen dieses Ansatzes befinden und weiterer Entwicklungsbedarf besteht.
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Abstract
This work is concerned with the numerical approximation of solutions to models that

are used to describe atmospheric or oceanographic flows. In particular, this work concen-
trates on the approximation of the Shallow Water equations with bottom topography and
the compressible Euler equations with a gravitational potential. Numerous methods have
been developed to approximate solutions of these models. Of specific interest here are the
approximations of near equilibrium solutions and, in the case of the Euler equations, the
low Mach number flow regime. It is inherent in most of the numerical methods that the
quality of the approximation increases with the number of degrees of freedom that are used.
Therefore, these schemes are often run in parallel on big computers to achieve the best pos-
sible approximation. However, even on those big machines, the desired accuracy can not
be achieved by the given maximal number of degrees of freedom that these machines allow.
The main focus in this work therefore lies in the development of numerical schemes that
give better resolution of the resulting dynamics on the same number of degrees of freedom,
compared to classical schemes.

This work is the result of a cooperation of Prof. Klingenberg of the Institute of Mathe-
matics in Würzburg and Prof. Röpke of the Astrophysical Institute in Würzburg. The aim
of this collaboration is the development of methods to compute stellar atmospheres. Two
main challenges are tackled in this work. First, the accurate treatment of source terms in
the numerical scheme. This leads to the so called well-balanced schemes. They allow for an
accurate approximation of near equilibrium dynamics. The second challenge is the approx-
imation of flows in the low Mach number regime. It is known that the compressible Euler
equations tend towards the incompressible Euler equations when the Mach number tends to
zero. Classical schemes often show excessive diffusion in that flow regime. The here devel-
oped scheme falls into the category of an asymptotic preserving scheme, i.e. the numerical
scheme reflects the behavior that is computed on the continuous equations. Moreover, it is
shown that the diffusion of the numerical scheme is independent of the Mach number.

In chapter 3, an HLL-type approximate Riemann solver is adapted for simulations of the
Shallow Water equations with bottom topography to develop a well-balanced scheme. In
the literature, most schemes only tackle the equilibria when the fluid is at rest, the so called
Lake at rest solutions. Here a scheme is developed to accurately capture all the equilibria of
the Shallow Water equations. Moreover, in contrast to other works, a second order extension
is proposed, that does not rely on an iterative scheme inside the reconstruction procedure,
leading to a more efficient scheme.

In chapter 4, a Suliciu relaxation scheme is adapted for the resolution of hydrostatic
equilibria of the Euler equations with a gravitational potential. The hydrostatic relations are
underdetermined and therefore the solutions to that equations are not unique. However, the
scheme is shown to be well-balanced for a wide class of hydrostatic equilibria. For specific
classes, some quadrature rules are computed to ensure the exact well-balanced property.
Moreover, the scheme is shown to be robust, i.e. it preserves the positivity of mass and
energy, and stable with respect to the entropy. Numerical results are presented in order to
investigate the impact of the different quadrature rules on the well-balanced property.

In chapter 5, a Suliciu relaxation scheme is adapted for the simulations of low Mach
number flows. The scheme is shown to be asymptotic preserving and not suffering from
excessive diffusion in the low Mach number regime. Moreover, it is shown to be robust
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under certain parameter combinations and to be stable from an Chapman-Enskog analysis.
Numerical results are presented in order to show the advantages of the new approach.

In chapter 6, the schemes developed in the chapters 4 and 5 are combined in order to
investigate the performance of the numerical scheme in the low Mach number regime in a
gravitational stratified atmosphere. The scheme is shown the be well-balanced, robust and
stable with respect to a Chapman-Enskog analysis. Numerical tests are presented to show
the advantage of the newly proposed method over the classical scheme.

In chapter 7, some remarks on an alternative way to tackle multidimensional simulations
are presented. However no numerical simulations are performed and it is shown why further
research on the suggested approach is necessary.
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1 Introduction

1 Introduction

The purpose of this chapter is to give a brief overview on the type of equations under consider-
ation. Therefore it is neither complete nor extensive. The following notions, if not mentioned
otherwise, can be found in classical textbooks such as [115],[23],[49],[66],[161],[82],[60] and
many others.

1.1 Conservation Laws

1.1.1 Existence and uniqueness of solutions

Physical models to describe atmospheric flows can be derived by means of conservation of
physical quantities such as mass, momentum and energy. These considerations often lead to
hyperbolic partial differential equations (PDE). A hyperbolic PDE may take the following
shape

u(t, x)t +∇ · f(u(t, x)) = 0, (1.1)

where u(t, x) : R × Rn 7→ Rm gives the vector of conserved quantities and f = (f1, ...fn)T

with ∀i fi : Rm 7→ Rm is called the flux function. x denotes the spatial coordinate and t
denotes the time. Additionally, the following abbreviations for the partial derivatives are
being used: ut = ∂u

∂t and uxi = ∂u
∂xi

for the partial derivatives with respect to time and the
spatial coordinates respectively. In order to call a PDE hyperbolic, certain restrictions on
the flux function must be satisfied. They are specified in definition 1.1.1.

Definition 1.1.1. A system of type (1.1) is called hyperbolic if and only if for all i ∈
{1, ..., n} the matrix ∂

∂ufi(u) is diagonalizable with real eigenvalues.

A critical property of hyperbolic PDEs is that they ensure the conservation of the variables
u. This can be seen by integrating (1.1) over a volume V ∈ Rn and applying the Gauss
theorem on the flux derivative to get

∂

∂t

∫
V
u(t, x)dx+

∫
∂V

n · f(u(t, x))dx = 0, (1.2)

where n is the outward normal to the boundary of V , i.e. ∂V . Equation (1.2) gives
that changes to the volume integral of the conserved quantity are only due to fluxes on the
boundary of V, thus ensuring, if the system is closed, i.e.

∫
∂V n ·f(u(t, x))dx = 0, the volume

integral of u is invariant in time. Equation (1.2) is also sometimes referred to as the integral
form of (1.1). It will be useful to derive the finite volume scheme in section 2.

In practice, the system (1.1) is used to compute the evolution of some initial data. This
gives rise to an initial value problem, also called a Cauchy problem, of the type{

u(t, x)t +∇ · f(u) = 0,

u(0, x) = u0(x).
(1.3)
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1.1 Conservation Laws

When dealing with hyperbolic PDEs it is a classical observation that solutions to (1.3) may
develop discontinuities over time, even when the initial data is very smooth, i.e. u0 ∈ C∞.
A classic example here is derived from the inviscid Burgers equation, see [115] and [82] for
a detailed analysis. So it may be hard to give meaning to the partial derivatives originally
used to describe the evolution of u. To overcome this issue, the concept of weak solutions
has been introduced. The idea is that one can get ride of the partial derivatives by putting
them via integration by parts onto so called test functions, which in turn carry the desired
regularity to give a proper meaning to the equation. By multiplying (1.1) with a test function
φ(t, x) ∈ C1

c([0, T [, V ) and integrating over a volume V and a time interval [0, T [ leads to∫ T

0

∫
V
φtu+∇φ · f(u)dxdt = −

∫
V
φ(0, x)u(0, x)dx, (1.4)

which gives rise to the definition 1.1.2.

Definition 1.1.2. A function u(t, x) is called a weak solution if u satisfies (1.4) for all
φ(t, x) ∈ C1

c([0, T [, V ).

It is not obvious if solutions to (1.4) have anything to do with solutions to (1.3). The
derivation of the weak form involves integration by parts which is only true for sufficiently
smooth solutions. But the aim is actually to get more control, if the solutions are not
smooth. However, for specific systems, the following simplified version of theorem 5.3.1 from
[49] connects the concept of weak solutions to the solutions of (1.3).

Theorem 1.1.1 (Weak Strong Uniqueness). If there exists a solution u ∈ C1 to (1.4), then
it is the unique weak entropy solution to (1.4) and also a solution to (1.3)

It is not yet specified what a weak entropy solution is. In general, the entropy is a function
of the distribution u and might give additional information or restrictions when computing
the evolution of u. The mathematical concept of entropy may be understood as closely
related to physical entropy from the second law of thermodynamics that states that the
entropy of a closed system is never decreasing and reaches its maximum at its equilibrium
state, see for example [102]. While, as will be shown now, the dynamics of a mathematical
entropy is just reversed from the physical entropy, the idea of restricting the evolution of a
distribution u, or a system, by adding additional information to the system is similar. To
shortly review the concept of a mathematical entropy, it is assumed there exists a convex
entropy ψ(u) with an associated entropy flux Ψ(u) such that ψufu∇u = ∇ · Ψ(u). The
pair (ψ,Ψ) is also called an entropy, entropy-flux pair. In order to derive its dynamics one
multiplies (1.1) with ψu to get

ψ(u)t +∇ ·Ψ(u) = 0.

From this one might conclude that also the entropy is a conserved quantity for the system
(1.1). But the previous calculations are only formal, i.e. they are only valid for smooth
solutions. A tool often used to determine the dynamics of the entropy is the vanishing
viscosity approach, see for example [115] and [49]. Here the the system (1.1) is extended by
a parameterized second order term on the right as

ut +∇ · f(u)x = ε∆u.
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Now, again multiplying with ψu, integrating this over an arbitrary volume V and a finite
time interval [t1, t2], after some rearranging, one has∫ t2

t1

∫
V
ψt +∇ ·Ψ(u)dxdt =

∫ t2

t1

ε

∫
∂V

n · ψu∇udx− ε
∫
V
ψuu

n∑
i=1

u2
xidxdt.

To get information about the original equations, one analyses the limit behavior when
ε → 0. The first spatial integral on the right hand side vanishes, since the integrand is
bounded, at least if u is smooth on ∂V . Since V is arbitrary, this can be achieved when u
only has finitely many discontinuities. The second integral might not be bounded, especially,
if u is discontinuous inside V . However, since u2

x > 0 and ψ is assumed to be convex and
therefore ψuu > 0 holds, the term stays positive. Since the volume of integration was
arbitrary, it is straightforward to write the differential form of the evolution of the entropy
as

ψ(u)t +∇ ·Ψ(u) ≤ 0. (1.5)

Since one has to deal with discontinuities, a weak form of the last inequality can be derived
by the same means as for the conservation law to get∫ T

0

∫
V
φtψ +∇φ ·Ψ(u)dxdt ≤ −

∫
V
φ(0, x)ψ(0, x)dx. (1.6)

This gives rise to definition 1.1.3.

Definition 1.1.3. A function u(t, x) is called a weak entropy solution, if u satisfies (1.4)
and (1.6) for all φ(t, x) ∈ C1

c([0, T [, V ) and for all convex entropy-entropy flux pairs (ψ,Ψ).

In general it is an open question if definition 1.1.3 gives a suitable class to search for unique
solutions. For the case m = 1, Krushkov showed the uniqueness of weak entropy solutions
[99]. For the case n = 1 and m > 1, existence of solutions for specific systems has been shown
for example by Glimm [63] or Temple [159]. In the case of the 2-dimensional isentropic Euler
equations of gas dynamic, De Lellis and Székelyhidi [113] showed that there exist infinitely
many weak entropy solutions. Despite the failure of the definition of weak entropy solutions
to generally pick out a unique solution, the concept of weak entropy solutions is still used
to design numerical schemes.

1.1.2 Computing Discontinuous Solutions

It has been discussed that discontinuities may appear in the solution of the Cauchy problem
(1.3). Now the dynamics of these discontinuities shall be tackled. A way to approach this
problem is to analyze the Riemann problem, which consists of a piecewise constant initial
condition separated by a discontinuity. For n = 1, it is defined as

ut + f(u)x = 0,

u(0, x) = uL if x < 0,

u(0, x) = uR if x > 0.

(1.7)

Assume for now that there may be a single discontinuity arising from this problem moving
with a constant speed s. This means that one is searching for a solution of the following
type

3



1.1 Conservation Laws

u(t, x) =

{
uL if x < st

uR if x > st
. (1.8)

Assume a large enough volume V = [−dV, dV ] around 0. Then, from (1.2), one obtains

∂

∂t

∫
V
u(t, x)dx = f(uL)− f(uR). (1.9)

On the other hand, given the assumed structure of the solution (1.8), one can evaluate
the integral at a given time t exactly to get∫

V
u(t, x)dx = (dV + st)uL + (dV − st)uR. (1.10)

Differentiating (1.10) with respect to time and using (1.9) one gets that

f(uR)− f(uL) = s(uR − uL). (1.11)

The equations (1.11) are the so called Rankine Hugoniot jump conditions. They are a
indispensable tool, when dealing with discontinuous solutions.

In the case of m = 1, the Riemann problem (1.7) always admits a single shock solution and
the shock speed is uniquely determined by the left and right state. However, those solutions
might not be entropy weak solutions. If m > 1, the left and right side of (1.11) are vectors
and therefore the condition is satisfied if and only if the two vectors are linear dependent. If
the vectors are linear dependent, one can compute the shock speed as in the case for m = 1.
If this is not the case, more sophisticated techniques have to be used.

Start to tackle that problem by computing, given a state uL, which states uR do satisfy
the Rankine-Hugoniot relations. To do this parameterize the state uR and the shock speed
s in (1.7) in the following way

uR = u(θ, uL) with u(0, uL) = uL,

s = s(θ, uL, uR).

Using these in (1.11) and differentiating with respect to θ gives then

fuu(θ, uL)θ = s(θ, uL, uR)θu(θ, uL)θ. (1.12)

The parameterized curve u(θ, uL) is thus tangent to an eigenvector of fu. The family of
points u(θ, uL) is also called the Rankine-Hugoniot loci with respect to uL. However, since
f is assumed to be hyperbolic, it admits a basis of m eigenvectors and therefore m different
curves of this type exist. In order to find a unique solution, it is worthy taking a step
back. It can be seen from (1.12) that the shock speed is somewhat related to the respective
eigenvalue to which eigenvector the curve is tangent. Since the system is considered to be
hyperbolic, it can be diagonalized to have

wt + diag(λ1(w), ..., λm(w))wx = 0,

where w are referred to as the characteristic variables and are chosen to be ordered with
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0

t

x

λ1(w) λ2(w) λm−1(w) λm(w)

uRuL

um−1u1

Fig. 1.1: Solution structure to a Riemann problem for a linear system.

respect to their eigenvalues λ1(w) < .... < λm(w). In this ordering it is assumed, that the
eigenvalues are all distinct. Later in this work, there will be systems, where this is not true
and eigenvalues will coincide. This is referred to as the resonant case. For now and for the
sake of simplicity, resonance is not considered.

If f would be linear, the eigenvalues would not depend on w and one could solve the now
m decoupled equations independently. This then leads to a piecewise constant solution with
m + 1 states, separated by m discontinuities, whose propagation speeds are given by the
respective eigenvalue. The states can be ordered from left to right as uL, u1, ..., um−1, uR,
see figure 1.1. A straightforward computation shows that ui−1 and ui are connected by a
shock curve related to the eigenvector vi with the respective eigenvalue λi.

In the non-linear case, the diagonalized system is not decoupled. The eigenvalues in
general depend on w and therefore the equations do not decouple. However, one can learn
from the linear case that information in a hyperbolic system is propagated with the speed
of the eigenvalues. In order to respect that structure, one computes at uL the shock curve
regarding to the eigenvector with the smallest eigenvalue and the state u1 must lie on this
curve. Then from u1 one constructs the shock curve with respect to the eigenvector with the
second smallest eigenvalue to find suitable locations for u2 and so on. Denoting the shock
curve with respect to the k-th eigenvector originating from uk as u(θ, uk)k, one can state
that finding a solution to (1.7) is equivalent to find (θ1, ...., θm) such that

u1 = u(θ1, uL)1,

u2 = u(θ2, u1)2,
...

uR = u(θm, um−1)m.

(1.13)

It should be remarked that this is a highly non-linear system, where the shock curves ui
might not even be known explicitly. The Riemann problem will be a central building block
for the setup of the numerical schemes which are developed in this work, while the idea is

5



1.1 Conservation Laws

to somehow approximate the exact solution to the Riemann problem to avoid unnecessary
computational load.

The existence of solutions to the system (1.13) is discussed and under certain conditions
ensured by for example Lax [104] [105] or Smoller [154]. The concept behind the proofs in
general rely on the application of the implicit function theorem to ensure the existence of
the shock curves where the hyperbolicity of fu give that the eigenvectors span the whole
phase space. However, the application of the implicit function theorem only allows for
small variations in the initial data, i.e. | uL − uR |≤ ε. Existence for large data variation
may only be shown for specific systems like the isentropic Euler equations, while there are
counterexamples where this is not true, see Smoller [153].

Along with the question of existence of solutions to the Riemann problem comes the
question of uniqueness. In order to discuss this issue, a description of two different types of
shock curves is given.

Definition 1.1.4. A shock curve u(θ, u)i is called genuinely nonlinear, if

∀u ∇λi(u) · vi(u) 6= 0 (1.14)

and linear degenerate, if

∀u ∇λi(u) · vi(u) = 0. (1.15)

As mentioned before, the entropy plays a critical role in finding solutions to conservation
laws. As can be shown, not every discontinuity is admissible due to the entropy condition
(1.6). A criterium for admissibility gives the Lax entropy condition.

Definition 1.1.5 (Lax Entropy Condition). For a genuine non-linear shock curve in the
k-th field, a discontinuity is called admissible, if

λ(uk−1) > s > λ(uk), (1.16)

where s is the speed of the shock.

This gives an additional restriction on which states can be connected by a discontinuity.
In order to search for a state that can be connected through a shock wave, one is only allowed
to go along the shock curve in the direction of a decreasing eigenvalue. If the connection is
along a shock curve in the direction where the eigenvalue increases, all the values along the
shock curves are actually realized in the final solution. Those parts are called rarefaction
waves and are continuous and non constant parts of the solution the the Riemann problem.
It can be shown that across rarefaction waves and linear degenerate discontinuities, which are
also called contact discontinuities, entropy is conserved. Entropy will only decrease across
shock waves. Equipped with the admissibility condition 1.1.5 it can be shown that for special
systems the solution to the Riemann problem exists and is unique, see again Lax [104],[105].

Finally for this section, there should be mentioned another way to solve for the solution
to the Riemann problem, which will also be used to derive the numerical schemes.

Definition 1.1.6. A function Φ : Rm 7→ R is called a Riemann invariant to the field i, if

∇uΦ · vi,k = 0, (1.17)

for all vi,k such that fuvi,k = λivi,k .
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Note that in definition 1.1.6, the case of resonance is considered, i.e. there may be more
then one eigenvector to a given eigenvalue. Since the shock curves are parallel to the respec-
tive eigenvector, the condition (1.17) states that the function Φ is constant along the shock
curve.

Along this, the question of how many of these functions Φ can be found for each shock
curve arises. Assume, that the multiplicity of the eigenvalue and eigenvector is l. It is
straightforward, that one can find m− l vectors wi, which are orthogonal to vi,k. It remains
to check weather the given vector fields are integrable, see [23] for a more detailed discussion
and the statement of theorem 1.1.2.

Theorem 1.1.2. To a respective eigenvalue with multiplicity l, there exist at most m − l
Riemann invariants, while if l = 1, then there exist exactly m− 1 invariants.

Therefore for the special case of distinct eigenvalues, one has for each field m − 1 invari-
ants. So for each field one can state m − 1 equations to determine the relations across the
discontinuity. Therefore, to find the solution to the Riemann problem the following system
of equations has to be solved.

∀m−1
k=1 ∀

m−1
i=0 Φ(ui)k = Φ(ui+1)k. (1.18)

These are (m− 1)×m equations, while solving for ui for i = 1, ...,m− 1 give (m− 1)×m
unknowns. However, in general (1.18) is again a non-linear system of equations and existence
and uniqueness is not obvious from the beginning and have to be proven for the different
cases.

1.2 Balance Laws

1.2.1 Physical Source terms

In practice, many physical models which are formulated as conservation laws are extended
by external influences. In astrophysical applications they might reach from radiation over
chemical reactions up to gravitational acceleration. It is often not possible to include these
terms in the flux divergence, so one ends up with a system of the following type

u(t, x)t +∇ · f(u) = S(u), (1.19)

where u(t, x) : R×Rn 7→ Rm gives the vector of the dependent quantities and f = (f1, ...fn)T

with ∀i fi : Rm 7→ Rm is called the flux function and S : Rm 7→ Rm is called the source
term.

Consider the case n = 1 and rewrite system (1.19) with the help of the function a(x) = x
by multiply (1.19) with a(x)x one has{

u(t, x)t + f(u)x = S(u)a(x)x,

at = 0.
(1.20)

The advantage of this approach now lies in the fact that the system might be rewritten in

quasilinear form. Let ũ =

(
u
a

)
, there is
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1.2 Balance Laws

ũ(t, x)t +

(
fu S(u)
0 0

)
ũ(t, x)x = 0. (1.21)

Therefore, the source term can be understood as adding another equation and with it a new
linear degenerate eigenvalue 0. It can be seen, that hyperbolicity in the sense of definition
1.1.1 is recovered if all the eigenvalues of fu are non zero. The solution to a Riemann
problem now involves dealing with a stationary wave due to the action of the source term.
If all other waves are bounded away from 0, the classical techniques of conservation laws can
be applied for them. Following [69], across the 0 wave, generalized jump conditions have to
be considered using the theory of non-conservative products developed in [128]. The details
of this analysis is omitted here.

The existence and uniqueness of solutions to the Cauchy problem for such equations is not
so well established as for the conservation laws. One difficulty lies in the various forms the
source term can take. Another one lies in the fact that in physical applications, the matrix fu
might admit a 0 eigenvalue. This case is called resonance, since two waves, in this case the one
from the source and one from the conservative part, coincide. Two specific issues may arise
is this case. First, the geometric multiplicity and the algebraic multiplicity of the eigenvalue
might not be the same, and therefore the eigenvectors of the system matrix will not span
the whole phase space. Second, even if one has a complete set of eigenvectors, the Rankine
Hugoniout loci are now not curves, but hyperplanes in phase space and their intersections
are given by curves. It is not clear which state to choose on that curve for a solution and
a system dependent analysis is needed. For results on the analysis on those equations the
reader is referred to the following publications [120],[127],[163],[2],[112],[122],[84],[85],[3],[65]

Of special interest in this work are the equilibrium solutions to (1.19). Reviewing the
second law of thermodynamics, closed systems undergo a change in entropy until they reach
their respective equilibrium. Therefore one can expect, that many physical systems are at
least close to their equilibrium state. While in the end, the aim is not to compute exactly
those equilibria, but time dependent solutions close to those equilibria, it will be crucial to
understand the structure of those states. An equilibrium is given as a solution to the balance
law (1.19) where the time derivative is set to 0.

Definition 1.2.1. A distribution u(t, x) is called a steady state for system (1.19), if the
following equilibrium condition is satisfied

∇ · f(u) = S(u). (1.22)

In general, those equilibria are therefore again determined by some PDE. The existence
and uniqueness of solutions to those equations may also not be obvious. Consider the case
of n = 1. Then (1.22) can be rewritten in the following form

fuux = S(u).

Now, if fu is invertible, the differential equation for u can be written as

ux = f−1
u S(u).

However, in general fu is not invertible. Since fu is hyperbolic, fu is not invertible if it
admits a 0 eigenvalue. This corresponds to the previous mentioned case of resonance. As it
will turn out, the case of resonance will be relevant in section 1.4.
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1.2.2 Relaxation Source terms

For the derivation of the numerical schemes, the use of relaxation systems will be crucial.
A brief introduction on the structure of those systems shall be given in the following. Also
here for brevity, it is assumed that n = 1. Following the central publication by Chen,
Levermore and Liu [39], relaxation may be found naturally in many physical applications
like kinetic theory [33], gases not in thermodynamic equilibrium [98],[166], elasticity with
memory [145],[50], multiphase flow and phase transition [144],[64] and linear and nonlinear
waves [169]. A relaxation system can be understood as an extension of an underlying PDE to
model additional effects not yet captured by the homogeneous model. A relaxation system
may take the following shape

vt + g(v)x =
1

ε
R(v), (1.23)

where for M ≥ m now v ∈ RM , g(v) : RM 7→ RM and R(v) : RM 7→ RM . R is called the
relaxation source term and ε > 0 is the relaxation parameter. Usually the relaxation source
term is structured such that there exists a k dimensional manifold M∈ RM , where k < M ,
such that R(v) = 0 if and only if v ∈ M. M is also called the equilibrium manifold of the
relaxation system. ε is a parameter which determines the time for the system to reach its
equilibrium manifold and is also sometimes called the relaxation time of the system. Assume
for now, that ε is small and the time derivative in (1.23) is dominated by the relaxation source
term. In order for the manifold M to be stable under the resulting dynamics it must hold
that

Rv |M< 0. (1.24)

The class of relaxation systems is rich. This work concentrates on a specific type of
relaxation system. Consider the following form of system (1.23)(

u
ur

)
t

+

(
fc(v)
fr(v)

)
x

=
1

ε

(
0
r(v)

)
, (1.25)

where u ∈ Rm as in (1.1) and ur ∈ RM−m, fc : RM 7→ Rm,fr : RM 7→ RM−m and
r : RM 7→ RM−m. The implicit function theorem gives that for the equilibrium manifold
there is M∈ Rm.

As mentioned before, relaxation systems are often used to extend the dynamics of a given
PDE to capture additional effects. Therefore it is natural to ask some consistency properties
of the relaxation system with respect to the original system.

Definition 1.2.2. A relaxation system of type (1.25) is called consistent with the system
(1.1), if

v ∈M ⇐⇒ fc(v) = f(u) ⇐⇒ r(v) = 0. (1.26)

In other words, when the state v is constrained on the equilibrium manifold M, then the
dynamics of the system (1.1) are recovered.

Concerning the stability of the relaxation system with respect to the underlying PDE,
different criteria are used. A rough criterium is already given in (1.24). It can be considered
as a necessary condition, but it can not be sufficient, because it does not incooperate the
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1.2 Balance Laws

flux functions involved. A step towards a more rigorous criterium is performing a Chapman-
Enskog analysis of the relaxation system. Since the equilibrium manifold and the relaxation
source term may have very complicated structures it is beneficial to make some assumptions
on the structure of the relaxation system.

First, it is suitable to define the equilibrium manifold M as a function of the variables of
the reduced system, i.e.

∀v ∈M ∃Q : Rm 7→ RM−m s.t. Q(u) = ur.

In practice, to find this function Q relates strongly on the choice which parts of the
dynamics of the underlying system should be extended. It might be determined by physical
concepts or practical reasons. For the following analysis, it is necessary to require some
regularity from Q.

The second assumption is on the structure of the source term. Let r(v) be given as

r(v) = Q(u)− ur.

This definition immediately satisfies the first stability criterium (1.24) and part of the
consistency relation in definition 1.2.2. Now, the first step in the Chapman-Enskog analysis
is to expand v in terms of the relaxation parameter ε as

v = v0 + εv1 + ε2v2 + ....

If ε is small, the relaxation system is dominated by the dynamics from the source term and
the variable v will tend tend towards the equilibrium manifoldM. Therefore the consistency

demands to set v0 =

(
u

Q(u)

)
.

Now rewrite the lower part of (1.25) to get

ur = Q(u)− ε((ur)t + fr(v)x).

Using the expansion and keeping only the first order terms in ε on the right hand side
yields

ur = Q(u)− ε(Q(u)t + fr(v0)x).

Now one multiplies (1.1) by Qu to get

Q(u)t +Qufuux = 0.

After further rewriting there is

ur = Q(u)− ε(fr(v0)x −Qufuux).

Applying the chain rule for the upper part of the relaxation system (1.25) on the other
hand gives

ut + (fc)uux + (fc)ur(ur)x = 0.

Inserting the expression for ur then gives
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ut + (fc)uux + (fc)urQ(u)x = ε(fc)ur(fr(v0)x −Qufuux)x.

Since the term Q(u) ensures that the left side is on the equilibrium manifold, the consis-
tency relation from definition 1.2.2 can be used to finally get

ut + f(u)x = ε(fc)ur(fr(v0)x −Qufuux)x. (1.27)

For stability it remains to check if the right hand side gives a stable dissipation.

The here presented version of the Chapman-Enskog analysis might seem unnecessary cum-
bersome, but as it turns out, all relaxation systems used in this work can be reformulated
in the previous described form, so it is worthy, analyzing the approach in this way. It also
should be remarked that the right hand side now shares some similarities with the vanishing
viscosity approach from the previous section. The vanishing viscosity approach has been
successfully used to proof existence and uniqueness of conservation laws. Therefore one
might hope that extending a conservation law by the relaxation approach might give some
new insights.

The third stability criterium for a relaxation system comes from the consideration of
entropy. As in section 1.1, one can start by searching for an entropy, entropy flux pair
(ψ,Ψ), such that the relaxation system (1.23) can be reformulated to

ψt + Ψx =
1

ε
ψvR(v). (1.28)

In contrast to the conservation laws, now there is a non-zero right hand side. To have
control upon the dissipation of entropy, it is natural to ask the right hand side to be negative.
Definition 1.2.3 is given in [39].

Definition 1.2.3. A twice-differentiable function ψ : RM 7→ R is said to be an entropy for
the system (1.23) provided

• ψv,vgv is symmetric for all v

• ψvR(v) < 0 for all v

• The following are equivalent

– R(v) = 0

– ψvR(v) = 0

– ∃ψ̄ s.t. ψv = ψ̄u if v ∈M

The entropy ψ is called convex, if

• ψv,v > 0 for all v

The first condition is the Lax entropy condition for conservation laws [105]. It guarantees
an existence of an entropy flux Ψ. The second condition can be related to the H theorem of
Boltzmann [33]. Equipped with this definition, it is possible to prove the following theorem
from [39].
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Theorem 1.2.1. Assume that there exists an entropy by definition 1.2.3 for the system
(1.23). Then the local equilibrium approximation

ut + fc(u)x = 0

is hyperbolic with the convex entropy entropy-flux pair (ψ̄(u), Ψ̄(u))

∀v ∈M ψ̄(u) = ψ(v) and Ψ̄(u) = Ψ(v).

To put it in other words, if such an entropy for the relaxation system exists, then the
dynamics of the relaxation system, if restricted to the equilibrium manifold, are identical
with the underlying conservation law. Actually this theorem is even stronger, as it predicts
that conservation laws can be derived from such relaxation system. While it is out of the
scope of this work to derive conservation laws by the means of relaxation systems, this
theorem gives confidence in working with those relaxation systems as approximations to
conservation laws.

Several other properties can be shown by assuming the existence of an entropy as given
by definition 1.2.3. First, it ensures the positiveness of the diffusion on the right hand side
of (1.27), see Theorem 2.2 in [39]. The entropy condition is therefore a stronger stability
argument as the Chapman-Enskog analysis. The second property gives a relation between
the wave structures of the relaxation system and its equilibrium system.

Theorem 1.2.2 (Interlacing of the eigenvalues [39]). Given the eigenvalues of the relaxation
system as Λ1 ≤ ... ≤ ΛM and the eigenvalues of the equilibrium system as λ1 ≤ ... ≤ λm .
Then, if v /∈M, then there is

Λ1 < λ1 ≤ ... ≤ λm < ΛM (1.29)

and if v ∈M, then
Λ1 = λ1 ≤ ... ≤ λm = ΛM . (1.30)

The inequalities in (1.29) state that the relaxation system propagates information faster
than the equilibrium system if not in equilibrium. This is also often referred to as the
Whitham- or subcharacteristic-condition. It is therefore a necessary stability criterion, when
analyzing relaxation system.

A special case of a relaxation system is the so called Jin-Xin relaxation [88]. It is probably
the most widely used relaxation approach for theoretical analysis, as well as for numerical
applications. Consider for this again the conservation law of the type

ut + f(u)x = 0.

Multiplying by fu from the left gives by the chain rule

f(u)t + f2
uux = 0.

A relaxation system can be formed by combining the last two equations, substituting
f(u) = ur and f2

u = c2 and adding the relaxation source term to get the following system(
u
ur

)
t

+

(
ur
c2u

)
x

=
1

ε

(
0

f(u)− ur

)
. (1.31)
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In the previous defined terminology one has that Q(u) = f(u), fc(u.ur) = ur and
fr(u, ur) = c2u. Therefore the first order approximation to the relaxation system now
reads

ut + f(u)x = ε(c2I − f2
u)uxx.

Stability is therefore assured if c2I > f2
u . It is straightforward to see that this relation can

be reformulated in terms of the eigenvalues of the flux function f as c2 > λ2
max, where λmax

is the eigenvalue of f with the largest absolute value. Hence, in this case one can get the
subcharacteristic condition directly from the Chapman-Enskog expansion.

The derivation of the relaxation model is only formal and if the solutions of the relaxation
model converge to solutions of the underlying PDE is not obvious. If m = 1, i.e. for scalar
conservation laws, then M = 2 and system (1.31) becomes a 2 × 2 system. In this case,
the rigorous investigation of the limit ε → 0 has been started in [39] and [40] by using
compensated compactness techniques, see [158]. Further work on the convergence to the
weak solution of the Cauchy problem can for example be found in the work by Natalini
[137]. There are also various other contributions to this subject. Here now given is a list,
which is neither complete nor exhaustive and the interested reader is referred to these, but
also the references therin [126],[138],[121],[103],[45],[174],[36],[100],[119], [91],[90]

1.3 The Inviscid Compressible Euler Equations of Gas Dynamics

The inviscid Euler equations of gas dynamic are a hyperbolic PDE used to describe gas flow.
They are a crucial part in models for atmospheres. In 3 space dimensions they are given as

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + Ip) = 0,

Et +∇ · (u(E + p)) = 0,

(1.32)

where ρ(x, t) : R3×R+ 7→ R+ is the density and u(x, t) : R3×R+ 7→ R3 denotes the velocity
of the fluid. E : R3 × R+ 7→ R+ is the total energy, which is composed of the internal and
kinetic energy of the fluid as E(x, t) = ρe + ρu2

2 , where e = e(x, t) : R3 × R 7→ R+ is the
internal energy density. The system is closed by the pressure p, which is a function of the
dependent variables, i.e. p = p(ρ,E) : R+ × R+ 7→ R+.

The system (1.32) is a classic example for conservation laws. It is composed of the con-
servation of mass ρ, 3 equations for the conservation of the linear momenta ρu and the
conservation of the total energy E. It can be derived by considerations of the conserva-
tion of the previous mentioned quantities under application of Reynolds transport theorem,
Newtons laws of motion and the first law of thermodynamics, see for example [58],[115].
Alternatively, one might derive the Euler equations by taking moments of the Boltzmann
equations and using Maxwells equation to find the closure of the system, see for example
[165].

The eigenvalues λi of the flux functions in each direction i can be read as

λi ∈ {ui, ui +

√
ppe − pτ

ρ
, uj} for j 6= i, (1.33)
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1.3 The Inviscid Compressible Euler Equations of Gas Dynamics

where ui is the i − th component of u. It can be shown, [115], that the eigenvalues ui are
linear degenerate and the others are genuinely nonlinear.

1.3.1 Some Thermodynamic Properties

In general it is assumed that the pressure law satisfies the second law of thermodynamics.
Therefore, there exists a specific entropy η(ρ, e) : R+ × R+ → R+, which satisfies, for some
temperature T (ρ, e) > 0, the following relation:

− Tdη = de+ pdτ, (1.34)

where τ = 1
ρ is called the specific volume. It follows, that the specific entropy satisfies the

following equations:

η(τ, e)τ = − p(τ, e)
T (τ, e)

< 0 and η(τ, e)e = − 1

T (τ, e)
< 0. (1.35)

In addition, throughout this work, the specify entropy is assumed to be strictly convex.
Additionally, to enforce hyperbolicity, a positive acoustic impedance is assumed as

ppe − pτ
ρ

> 0. (1.36)

Due to the hyperbolicity of the system, solutions may become discontinuous after a finite
time. As described in section 1.1, an entropy-entropy flux pair has to be chosen to rule out
unphysical solutions. Lemma 1.3.1, see also [55], shows that the specific entropy previously
defined is the building block for such a pair.

Lemma 1.3.1. The smooth solutions of (1.32) satisfy the additional conservation laws

(ρF(η))t +∇ · ρF(η)u = 0, (1.37)

for all smooth functions F .
Moreover, assume

F ′(η) > 0 and
1

cp
F ′(η) + F ′′(η) > 0, (1.38)

where cp is the specific heat at constant pressure, defined by

cp = −T
(
∂η

∂T

)
p

,

then w 7→ ρF(η) is strictly convex. As a consequence, the pair (ρF(η), ρF(η)u) defines a
Lax entropy-entropy flux pair for system (1.32). Hence, the weak solutions of (1.32) satisfy
in addition:

(ρF(η))t +∇ · ρF(η)u ≤ 0. (1.39)

Proof. First consider smooth solutions of (1.32). From the continuity equation there is

τt + τ∇ · u− u∇τ = 0, (1.40)
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and from the equations for momentum and energy there is

et + u∇e+ pτ∇ · u = 0. (1.41)

Next, multiplying (1.40) by − p
T and (1.41) by − 1

T and using the relations (1.35), it holds
that

∂τη∂tτ + u∂τη∇τ − τ∂τη∇ · u = 0, (1.42)

∂eη∂te+ u∂eη∇e+ τ∂τη∇ · u = 0. (1.43)

The sum of (1.42) and (1.43) easily gives

∂tη + u∇η = 0.

The result is then achieved by multiplying this relation by ρF ′(η) and combining it with the
continuity equation.

The establishment of the Lax entropy pair comes from a straightforward study of the Hes-
sian matrix of ρF(η) (for instance, see [49, 66, 77, 111] and references therein).

All the previous calculations only make sense if the dependent variables are in a physical
reasonable regime, i.e. ρ > 0 and e > 0 and therefore there should be defined the set of
physical admissible states as

ΩPhys = {(ρ, ρu, E) ∈ R5; ρ > 0, e > 0}. (1.44)

There are different closures for the system (1.32). The most widely known is the ideal gas
law, where

p = ρRT, (1.45)

and R is the gas constant.

For a polytropic gas, this relation can be rewritten in terms of the internal energy as

p = ρ(γ − 1)e, (1.46)

where γ is the polytropic index. It depends on the ratio of specific heats

γ =
cp
cv
, (1.47)

and cv is the specific heat at constant temperature. The entropy for an polytropic gas
takes therefore the following the form

s = log(
p

ργ
). (1.48)

Equation (1.45) is also called an equation of state (EOS). EOSs are used to describe the
properties of the fluid through thermodynamical principles. They often depend on the state
and composition of the fluid under consideration. The ideal gas law, often used for its
simplicity, yet often falls short to capture the properties of fluids in more realistic scenarios.
For other more sophisticated EOS especially in the context of astrophysical applications see
[131],[59],[160] and references therein.
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1.3 The Inviscid Compressible Euler Equations of Gas Dynamics

1.3.2 The Incompressible Limit

An important feature of the system (1.32) can be derived by analyzing the equations at low
Mach number. The Mach number is defined as

M =
‖u‖
c̄
, (1.49)

where c̄ is the speed of sound. To analyze the behavior of solutions in this regime, the
equations first are rewritten in a non-dimentionalized form, see also [9]. To this end, the

dependent and independent variables k are rescaled, such that k = k̂
kref

, where uref =
xref
tref

.

Rewriting the equations in terms of the non-dimentionalized values k̂ and dropping the hats
for convenience, the following set of equations is obtained

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + I p
M2 ) = 0,

Et +∇ · (u(E + p)) = 0,

(1.50)

employed with the definition for the total energy

E = ρe+M2ρ
u2

2
. (1.51)

Now, one is interested in the limit when M → 0. If one does not consider the energy equa-
tion in (1.50), it has been shown in the pioneering work by Klainermann and Majda [93] that
the compressible equations tend, under suitable boundary conditions, to its incompressible
counterpart, given as


ρ = const,

ut + u · ∇u +∇p̄ = 0,

∇ · u = 0.

(1.52)

This result is even more astonishing when the role of the pressure is analyzed. Taking the
divergence of the velocity equations yields

∆p̄ = −∇ · (u · ∇u).

In contrast to the compressible equations, where the pressure depends locally on the con-
served quantities, now the pressure satisfies an elliptic equation depending on the velocity
field u. Also other properties like the conservation of internal and kinetic energy can be
derived [132]. For the full system given in (1.50), only formal derivations of the incompress-
ible limit behavior exist, see for example [52],[74]. However, these derivations will be crucial
to analyze the behavior of the numerical schemes at low Mach numbers. Therefore a short
review is presented here.

Consider the system (1.50) and expand the dependent variables in terms of the Mach
number
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ρ =
∞∑
i=0

M iρi u =
∞∑
i=0

M iui p =
∞∑
i=0

M ipi e =
∞∑
i=0

M iei.

When plugged back into system (1.50) and only relations of the same order of Mach
number are considered, the pressure satisfies the following relations

p = p0 +M2p2 ∇p0 = ∇p1 = 0. (1.53)

Under the assumption of for example open boundary conditions, further computations
yield

ρ = ρ0 +Mρ1 u = u0 +Mu1 e =e0 +Me1, (1.54)

∇ρ0 = 0 ∇ · u0 = 0. (1.55)

One can understand the derived scalings as necessary conditions to reach the incompress-
ible limit. Analogous to the case of physical admissible states, a set of asymptotic preserving
states can be defined as

ΩAP = {(ρ, (ρu), E) ∈ R5;∇p0 = ∇p1 = 0,∇ρ0 = 0,∇ · u0 = 0}. (1.56)

The name asymptotic preserving is to be understood in the sense of being compatible with
the limit behavior of the system (1.49). Combining the definitions of (1.44) and (1.56), the
following set is defined

Ω = ΩPhys ∩ ΩAP . (1.57)

One of the aims of this work is to compute numerical approximations, that respect the
physical admissibility as well as the asymptotic scalings of the dependent variables. Or in
other words, (1.57) is an invariant set also for the numerical scheme.

1.4 The Euler Equations with a Gravitational Potential

When dealing with atmospheres, the Euler equations (1.32) are equipped with a source term
due to the gravitational acceleration of the fluid in the gravitational field of the astrophysical
object. The equations then read

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + Ip) = −ρ∇Φ,

Et +∇ · (u(E + p)) = −ρ〈u,∇Φ〉,
Φt = 0,

(1.58)

where Φ(x) : Rm 7→ Rm is the gravitational potential and is throughout this work assumed
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as given. An entropy-entropy flux pair for this system can easily be found when observing
that in the proof of Lemma (1.3.1) the source term does not play any role. Therefore the
system (1.58) admits the same entropy as the system (1.32). Moreover, the eigenvalues λi
of the system in each direction i can be read as

λi ∈ {0, ui, ui +

√
ppe − pτ

ρ
, uj} for j 6= i, (1.59)

where the additional 0 eigenvalue is due to the source term.

1.4.1 Equilibrium Solutions

Most astrophysical objects spend most of their time close to a steady state. Also the at-
mosphere of the earth is a system somehow close to an equilibrium state. It is therefore
interesting to investigate the equilibrium solutions of (1.58). In order to compute the equi-
libria, one sets the time derivatives in (1.58) to 0 and gets the following PDE

∇ · (ρu) = 0,

∇ · (ρu⊗ u + Ip) = −ρ∇Φ,

∇ · (u(E + p)) = −ρ〈u,∇Φ〉.
(1.60)

An important sub-class of solutions to (1.60) are the hydrostatic equilibria. These are
equilibria where the fluid is at rest, i.e. u = 0. When using this relation, one is left with the
following PDE

∇p = −ρ∇Φ. (1.61)

Depending on the EOS, in general the system (1.61) is underdetermined. In general, the
pressure p is a function of density and temperature, i.e. p = p(ρ, T ). However, using the
chain rule, one can rewrite the system as

pρ∇ρ+ pT∇T = −ρ∇Φ.

This is now a system of m equations, while there are 2m unknowns, i.e. ∇ρ and ∇T .
Additional assumptions are needed to compute solutions to (1.61). Presented here are 2
different assumptions, that lead to explicit solutions for a hydrostatic equilibrium

• Isothermal Atmosphere for an ideal Gas Law: p = ρRT
T (x) = const,

ρ(x) = ρ0 exp(−Φ(x)
RT ),

p(x) = RTρ0 exp(−Φ(x)
RT ),

(1.62)

• Polytropic Atmosphere p = KρΓ for Γ ∈ (0, 1) ∪ (1,∞)ρ(x) =
(

Γ−1
ΓK (C − Φ(x))

) 1
Γ−1 ,

p(x) = K
1

1−Γ
(

Γ−1
Γ (C − Φ(x))

) Γ
Γ−1 ,

(1.63)
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where C is just a constant of integration. If an ideal gas law is assumed, and Γ = γ,
then the polytropic atmosphere coincides with the isentropic atmosphere. Another way to
compute an isentropic atmosphere is given in [89]. Consider the thermodynamic relation
(1.34)

−Tdη = de+ pdτ.

rewriting leads to

dh = d(e+ τp) = −Tdη + τdp,

where h is the specific enthalpy. The isentropic assumption gives dη = 0 and one can use
the last relation in (1.61) to get

h+ φ = const. (1.64)

Other solutions to the system (1.61) exist, see for example [131],[59],[35] and references
therein. One of the main difficulties in computing accurate approximations to the system
(1.58) is the lack of knowledge about a general solution to the system (1.61).

As a remark to the computation of the hydrostatic equilibria, a different approach is pre-
sented here. Consider the case of one space dimension, following section 1.2.1, the equilibrium
equations can be rewritten as

f(u)uux = S(u). (1.65)

Now, in oder to give an explicit expression of the derivatives, one would like to multiply
from the left by f−1

u . Since f is hyperbolic, one has to check the eigenvalues of f to know if the

inverse exists. Assuming a polytropic gas law, the eigenvalues λi of f are λi ∈ {u, u±
√
γ pρ}.

In fact, the hydrostatic regime is just the case where f is not invertible and one has to deal
with the previous mentioned case of resonance. Apart from that, an interesting feature of
those general equilibria in one space dimension might be presented. Assume now that u
is such that f is invertible. By multiplying f−1

u from the left and some rearranging, the
following set of differential equations can be obtained

ρx = ρ ρΦx
ρu2−γp ,

ux = −u ρΦx
ρu2−γp ,

px = γp ρΦx
ρu2−γp .

(1.66)

Those equations can be further simplified. From the first equation in (1.60) it can be seen
that the velocity is inversely proportional to the density, i.e. u = α

ρ . A second property
involves the entropy in those equilibria. One can compute the derivative of the entropy to
get

sx = log(
p

ργ
)x =

pxρ− γpρx
ρp

= 0, (1.67)

where in the second step the first and third equation from (1.66) are used. Therefore, the
equilibria given by (1.66) are isentropic and the pressure can be related to the density as
p = βργ . Using these relations, one can rewrite the the system (1.66) in to one equation for
the density to have
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1.4 The Euler Equations with a Gravitational Potential

ρx =
ρ3Φx

α2 − γβργ+1
. (1.68)

The existence of solutions to this differential strongly depends on the gravitational po-
tential Φ. A critical value for ρ is, when the denominator on the right hand side is 0, i.e.

ρ̄ = (α
2

γβ )
1

γ+1 . By using the definitions for α and β, ρ̄ just refers to the sonic point, i.e.

u = ±
√
γ pρ̄ . Of special interest is, if the solutions tend towards this critical value. It is easy

to see that

If Φx > 0 and

{
ρ > ρ̄ then ρx < 0,

ρ < ρ̄ then ρx > 0,
, and if Φx < 0 and

{
ρ > ρ̄ then ρx > 0,

ρ < ρ̄ then ρx < 0.

(1.69)

So in the case of Φx > 0, the solutions tend towards its critical values ρ̄. Away from the
critical values ρ̄, the solutions to the differential equation (1.68) exists and are unique by the
Picard-Lindelöf theorem. It should also be obvious that the interval on which the uniqueness
is guaranteed grows, when α2 is getting smaller. So one can analyze how the solution will
behave, when α→ 0. To this end, consider this limit in (1.68) to get

ρx = −ρ
2−γΦx

γβ
, (1.70)

which gives back the polytropic equilibrium as in (1.63) and especially now the isentropic
equilibrium. The non-uniqueness of the hydrostatic equilibrium therefore comes from the
fact, that fu is singular at u = 0 and therefore, assume given a solution ūx to the system
fuux = S(u), there exist infinitely many solutions which can be expressed as ūx + v, where
v ∈ ker fu. The kernel of fu for u = 0 is simply the eigenvector of fu to the eigenvalue u,

which in primitive variables reads

1
0
0

. Therefore the hydrostatic equilibrium equations

may be recast in the following form{
ρx = −ρ2Φx

γp + ρδ,

px = −ρΦx,
(1.71)

where δ = δ(x) is some arbitrary function coming from the parameterization of the kernel
of fu. A last observation can be made in the connection between δ and the distribution of
entropy in the atmosphere. To this end, insert the equations (1.71) into the derivative for
the entropy given in (1.67) to get

sx = −γδ. (1.72)

Now it can be shown, that the first equation in (1.71) is a consequence of the second
equation. Use the formulation of the entropy in (1.48) and rewrite for the pressure to get

p = ργ exp(s).

Taking the derivative with respect to x then gives
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px =
γp

ρ
(ρx +

ρ

γ
sx).

Using this in the second equation of (1.71) gives then the desired result.

It is now trivial to see that δ ≡ 0 gives the isentropic equilibrium. To retrieve the isother-
mal equilibrium, one can determine δ by setting px = RTρx to get δ(x) = 1−γ

γ
Φx
RT . In the

end, one has the equivalent result to the previous analysis, i.e. that the hydrostatic equilib-
rium equation is underdetermined. While here the parametrization is related to the entropy
distribution, rather then the temperature profile. Furthermore, it should be stressed that
the limit of the general equilibria (1.66) is well defined and corresponds to the isentropic
equilibrium rather then the whole class of hydrostatic equilibria. However, to discuss the
consequences of this result is out of the scope of this work.

1.4.2 Computing the Limit Behavior

Finally, it is reasonable, when trying to compute approximations near hydrostatic equilibria,
to analyze the system (1.58) with respect to its behavior at low Mach numbers. A non-
dimentionalization as for the homogeneous case gives the following set of equations

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + I p
M2 ) = − ρ

Fr2∇Φ,

Et +∇ · (u(E + p)) = −ρM2

Fr2 〈u,∇Φ〉,
Φt = 0

(1.73)

where

Fr =
‖u‖

√
xrefgref

, (1.74)

is the Froude number and gref is the characteristic gravitational acceleration. When
concerning the limit M → 0, the scaling of the Froude number with respect to the Mach
number becomes crucial. To see this, expand the dependent variables in the Mach and
Froude number to get

ρ =
∞∑

i,j=0

M iFrjρi,j u =
∞∑

i,j=0

M iFrjui,j p =
∞∑

i,j=0

M iFrjpi,j e =
∞∑

i,j=0

M iFrjei,j .

The interesting part is the balance in the momentum equation. Ordering of the terms in
powers of M and Fr and looking at the terms in M−2 and Fr−2 gives

∇p0,0

M2
= − ρ0,0

Fr2
∇Φ. (1.75)

Assuming Fr = Mk, then, if and only if k = 1, in the limit of M → 0, the hydrostatic
equilibrium is reached as

∇p0,0 = −ρ0,0∇Φ.
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The same results hold true for the first order terms in the expansion. A divergence
constraint on the velocity field can not be reached due to the hydrostatic stratification of
the density profile. If k < 1, then the terms in Mach number will dominate and the limit is
equivalent to the one in the homogeneous case, see (1.56). When k > 1, the gravitational
forces will dominate in the limit and there is no reasonable in the framework of this model.
In the end, the scaling of the Froude and the Mach number should be determined by the
properties of the physical object under consideration. For computations of atmospheres,
the case of k = 1 is the most reasonable because in the limit, one reaches the hydrostatic
equilibrium. In this case, one can adjust the definition of the asymptotic preserving set for
this system as

ΩAP = {(ρ, (ρu), E) ∈ R5;∇p0,0 = −ρ0,0∇Φ,∇p0,1 = −ρ0,1∇Φ,∇p1,0 = −ρ1,0∇Φ}, (1.76)

or in other words, fluctuations around the hydrostatic equilibrium scale with M2, i.e.
∇p+ ρ∇Φ = O(M2).

1.5 The Shallow Water Equations

The Shallow Water equations were first derived by Saint-Venant in 1871 [150]. They can be
used to describe flows in which the depth is much smaller compared to the width. They can
be derived from the Euler equations with gravity (1.58). Certain assumptions are necessary
to do that. First write the Euler equations with gravity such that the gravity is only active in
the vertical component and constant. The fluid is considered to be incompressible. Therefore
there is 

ρ = const,

∇ · u = 0,

ut + uux + vuy + wuz + px
ρ = 0,

vt + uvx + vvy + wvz +
py
ρ = 0,

wt + uwx + vwy + wwz + pz
ρ = −g,

Pt + uPx + vPy + wPz = 0.

(1.77)

The flow is modeled as being enclosed by two boundaries. On the bottom by a topography
term B(x, y) and at the top by a free surface S(t, x, y) = h(t, x, y)+B(x, y), where h denotes
the height of the fluid. The boundary conditions are formulated as follows

St + uSx + vSy = w for z = h+B,

p = 0 for z = h+B,

u · ∇(z −B(x, y)) = 0 for z = B.

(1.78)

The first condition states that the free surface gets advected in the x, y plane by the flow
and lifted in the vertical direction by the vertical velocity w. The second condition reflects
that there is no pressure at the surface and the third condition gives that the bottom B acts
like a solid wall boundary, i.e. at the bottom, the flow is parallel to the bottom. Furthermore,
a long-wavelength approximation is used which states, that the resulting waves are much
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longer then the depth. Therefore, vertical accelerations can be neglected and the vertical
momentum equation from (1.78) becomes

pz = −gρ. (1.79)

Integrating (1.79) from the surface to an arbitrary height z̄ by using the zero pressure
assumption on the surface gives

p(t, x, y, z) = gρ(h+B − z̄). (1.80)

(1.80) is now replacing the pressure equation in (1.78). Using it further in the momenta
equations for u and v and neglecting their vertical variations gives then{

ut + uux + vuy + g(h+B)x = 0,

vt + uvx + vvy + g(h+B)x = 0.
(1.81)

The next goal is to derive an evolution equation for the fluid height h. To this end, consider
the divergence constraint and integrate it in the vertical direction to get

0 =

∫ h+b

B
∇ · udz =

∂

∂x

∫ h+B

B
udz +

∂

∂y

∫ h+b

B
vdz + [w]h+B

B

= (hu)x + (hv)y + [w − uzx − vzy]h+B
B ,

while in the third step it is used, that u and v do not depend on z and zeros have been added
with the terms uzx and vzy. Now the boundary conditions at the bottom and the surface
can be used to further get

0 = (hu)x + (hv)y + St.

Since the surface is the sum of the waterheight h and the bottom B, which does not
depend on time, one has the final form of the continuity equation

ht + (hu)x + (hv)y = 0.

Multiplying the momenta equation (1.81) with h and using the continuity equation, one
gets the Shallow Water model with bottom topography

ht + (hu)x + (hv)y = 0,

(hu)t + (hu2 + g h
2

2 )x + (hvu)y = −ghBx,
(hv)t + (huv)x + (hv2 + g h

2

2 )y = −ghBy.
Bt = 0

(1.82)

This system is hyperbolic with eigenvalues λ1 ∈ {0, u±
√
gh} and λ2 ∈ {0, v ±

√
gh} as

long as h > 0. One might see the similarity to the Euler system (1.58) by stating the pressure

as p = g h
2

2 and leaving out the equation for energy. In a similar fashion, an entropy, can be
defined, see for example [23], as
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s =
u2 + v2

2
+ g(h+B), (1.83)

and it can be shown that there holds

st + (us)x + (vs)y ≤ 0, (1.84)

where the equality holds for smooth solutions. In the case of the shallow water equations,
the entropy is referred to as an energy for the system. As well as for the Euler equations, a
physical relevant set can be defined as

ΩPhys = {(h, hu, hv) ∈ R3;h > 0}. (1.85)

One can search also here for the equilibrium solutions of this system. For this, the case of
two space dimensions is omitted and only one spatial dimension is considered. Setting the
time derivatives to 0 one has after some simplification{

(hu)x = 0,

(u
2

2 + g(h+B))x = 0.
(1.86)

These are referred to as moving equilibria. This class of equilibria is rich and, due to its
nonlinearities, delicate to deal with. Of special interest is a subclass of these solutions when
the velocity is set to 0. These are called the Lake at Rest solutions and are determined by{

u = 0,

g(h+B)x = 0.
(1.87)

In contrast to the hydrostatic equilibrium relation for the Euler equations, for determining
the Lake at Rest solutions, the resonance phenomenon does not occur and one in the end
does not have to deal with non-unique solutions. Additionally, the Lake at Rest relations
are algebraic equations instead of differential equations, which makes it easier to search for
a solution. However, resonance may occur for the moving equilibria (1.86). when the flow
changes type between sub- and supercritical, i.e. u2 = gh.
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2 Finite Volume Approximations of
Hyperbolic PDEs

This chapter is devoted to the derivation of the basic framework to design the numerical
scheme used in this work to search for approximations to the solutions of hyperbolic PDEs. A
key problem in searching for approximations to the PDEs with the help of a computer is that
PDEs are defined on a continuum in space and time. On a computer however, only discrete
values can be handled. Therefore, the PDE is discretized, or in other words, approximated by
a form which can then be used to compute solutions on a computer. Hence, when designing a
numerical scheme, the solution one gets is not a solution to the original PDE, but at best an
approximation. Even though, one might hope that when enough information is put into the
computer, those approximations will be sufficiently close to the solutions of the underlying
PDE. Another maybe even more drastic viewpoint on this issue is the construction of so
called modified equations, see for example [80],[167]. The idea is that the numerical scheme
actually solves a different PDE to higher accuracy than the underlying PDE.

There are many different ways to discretize a hyperbolic PDE. Two main approaches
consist of either projecting the continuum on discrete points, like in finite difference methods,
see for example [117],[73],[152], or to project the distributions u on some suitable function
spaces, like in finite volume or Galerkin methods, see for example [115],[161],[23],[43],[81].
While discussing the advantages of every approach is out of the scope of this work, the basic
framework will be the finite volume approach.

2.1 Finite Volume Approach for Conservation Laws

In order to derive the finite volume scheme for conservation laws, first recast the general
form of a conservation law (1.1) in one space dimension equipped with an initial condition
as {

ut + f(u)x = 0,

u(0, x) = u0.
(2.1)

One is interested to find approximations to the solution to the Cauchy problem (2.1). To
this end, first the computational domain D is divided into Nx finite volumes Vi as

∀Nxi=1 Vi = [xi− 1
2
, xi+ 1

2
], (2.2)

where the volumes are not overlapping, i.e. Vi ∩ Vj = ∅ and the volumes are covering the
whole domain, i.e. D = ∪Nxi=1Vi. When integrating the conservation law over a volume Vi
and using the divergence theorem one has∫

Vi

utdx+ f(u(t, xi+ 1
2
))− f(u(t, xi− 1

2
)) = 0. (2.3)

25



2.1 Finite Volume Approach for Conservation Laws

Defining the averaged quantity U(t)i = 1
∆xi

∫
Vi
u(t, x)dx, normalized by the size of the

volume ∆xi =
∫
Vi
dx one can rewrite (2.3) to get

Ui,t +
1

∆xi

(f(u(t, xi+ 1
2
))− f(u(t, xi− 1

2
))) = 0. (2.4)

The problem now has been transformed from solving a PDE to solving a set of Nx ODEs.
Observe, that in the definition of the fluxes across the boundaries of the volumes Vi, the
exact solution u to (2.1) is still needed. However, one does not know the exact solution and
therefore one needs to approximate the flux functions. Usually this can be done by setting

f(u(t, x)) ≈ F (U1, ..., UNx , x). (2.5)

F is also called the numerical flux function. This can be used in (2.5) to have

Ui,t +
1

∆xi

(Fi(U1, ..., UNx , xi+ 1
2
)− Fi(U1, ..., UNx , xi− 1

2
)) = 0. (2.6)

It is very important to understand, that the step from (2.5) to (2.6) is critical. Up to
then, only reformulations of the original conservation law have been made. But now the
equation has changed by replacing the exact flux f with the numerical flux function F .
Therefore, solving the ODEs arising from (2.6) is in general not equivalent to solving the
original conservation law (2.1). In the end, if in (2.6) a somehow well suited approximation is
used, one might hope to achieve reasonable approximations to solutions of (2.1). Important
properties for the choice of the numerical flux function are stated in definition 2.1.1.

Definition 2.1.1. A numerical flux function F (U1, ..., UNx , x) is called consistent with the
flux function f(u) if

U1 = .... = UNx = u⇒ F (u, ..., u, x) = f(u).

A numerical flux functions Fi are called conservative, if

Fi(U1, ..., UNx , xi+ 1
2
) = Fi+1(U1, ..., UNx , xi+ 1

2
).

The consistency property connects the numerical scheme (2.6) to the underlying PDE (2.1)
in a sense, that in the simplest case of u = const, the numerical scheme exactly reproduces
the dynamics of the PDE. Moreover, consider for theoretical purposes that one might want
to know if the approximations produced by the scheme converge to the exact solution. The
convergence process might be formulated by looking at the limit ∆xi → 0. Then, as long as
u is smooth, the averaged values Ui approach the exact value of u at their respective position
in space. In order for the numerical approximations to achieve the same limit, the numerical
flux function should share the same limit behavior. In order to achieve that some regularity,
like for example Lipschitz continuity, is usually asked from the numerical flux function.

The conservation property of a flux function is, not surprisingly, designed to reflect the
conservation property of the hyperbolic PDE. To see this, multiply (2.6) with ∆xi and then
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2 Finite Volume Approximations of Hyperbolic PDEs
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Fig. 2.1: Depiction of a finite volume discretization.

sum over the whole domain D to get

0 =

Nx∑
i=1

(
∆xiUi,t + Fi(U1, ..., UNx , xi+ 1

2
)− Fi(U1, ..., UNx , xi− 1

2
)
)

=

∫
D
utdD + FNx(U1, ..., UNx , xNx+ 1

2
)− F1(U1, ..., UNx , x1− 1

2
).

Due to the conservation property, the sum is telescoping and the remaining numerical flux
terms are fluxes at the boundary of the domain D . Additionally, the conservation property
is also a necessary condition for convergence of a numerical scheme. If a scheme is not in
conservation form, the approximations may suggest the wrong propagation of discontinuities,
even when reducing the size of the volumes, see [115] for more details.

The formulation for the numerical scheme (2.6) is up to now only discrete in space and
the time derivative is still defined on a continuum. A classical way is to discretize time into
a sequence of points tn, where tn = n∆t. Integrating (2.6) over the time interval [tn, tn+1]
and using the divergence theorem one has

Un+1
i − Uni +

1

∆xi

∫ tn+1

tn

Fi(U1, ..., UNx , xi+ 1
2
)− Fi(U1, ..., UNx , xi− 1

2
)dt = 0, (2.7)

where Uni = Ui(tn), see also figure 2.1. Observe that the numerical flux functions in this
formulation are still time dependent. Therefore, another approximation is needed to evaluate
the time integral. It is reasonable to assume that all the averages Uni are known at the time
instance tn. A straightforward way to approximate the integral is therefore

Fi(U1, ..., UNx , xi+ 1
2
) ≈ Fni (Un1 , ..., U

n
Nx , xi+ 1

2
). (2.8)
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2.1 Finite Volume Approach for Conservation Laws

Now the numerical flux functions are not depending on time anymore and the evaluation
of the integral is simple. The numerical scheme can be rewritten as

Un+1
i = Uni −

∆t

∆xi

(
Fni (Un1 , ..., U

n
Nx , xi+ 1

2
)− Fni (Un1 , ..., U

n
Nx , xi− 1

2
)
)
. (2.9)

Now all the known quantities are on the right side and the unknowns can be computed
explicitly by the formula (2.9). This type of time discretization is also often referred to as a
forward Euler time step. Alternatively, the dependence of the flux functions might be chosen
to be on the new values Un+1

i , i.e.

Fi(U1, ..., UNx , xi+ 1
2
) ≈ Fn+1

i (Un+1
1 , ..., Un+1

Nx
, xi+ 1

2
), (2.10)

where this leads to the following numerical scheme

Un+1
i +

∆t

∆xi

(
Fn+1
i (Un+1

1 , ..., Un+1
Nx

, xi+ 1
2
)− Fn+1

i (Un+1
1 , ..., Un+1

Nx
, xi− 1

2
)
)

= Uni . (2.11)

Again all the unknowns are put on the left hand side of the equation. In contrast to the
forward Euler formulation, the unknowns Un+1

i can now in general not be directly computed
from the average values at the previous time step and a in general nonlinear system of
equations has to be solved. This way of discretizing in time is also referred to as a backward
Euler time step.

The time interval of length ∆t seems arbitrary. However, in order for (2.9) to give reason-
able approximations, the time step ∆t has to satisfy a stability criterium. Consider again
the conservation law in (2.1)

ut + f(u)x = 0. (2.12)

Since f is hyperbolic, the matrix T , composed of all the right eigenvectors of fu, has full
rank and one can multiply (2.12) from the left with T−1 to get

T−1ut + T−1fuTT
−1ux = 0. (2.13)

Define now the variables w = T−1u to get

wt +Dwx = 0. (2.14)

w are also called the characteristic variables. D is a diagonal matrix as

D = diag(λ1, ..., λn), (2.15)

where λi are the eigenvalues of fu. What can be seen from this equation is that the eigenval-
ues represent velocities. Especially they determine how fast information propagates in the
domain. Since the eigenvalues are real and finite, one can conclude that the solution u at a
certain point (t, x) is influenced only by a finite set in space at an earlier time t−∆t. This
finite set is also called the domain of dependence of u(t, x) and is defined as follows

Definition 2.1.2. The set Df,∆t(t, x) defined as

Df,∆t(t, x) = {x̄ | u(t−∆t, x̄) has influence on u(t, x)}, (2.16)
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2 Finite Volume Approximations of Hyperbolic PDEs

is called the domain of dependence of (t, x) under the system (2.12)

To exactly compute the domain of dependence might be very difficult. One problem is
that for a general nonlinear system the eigenvalues depend on the solution, i.e. λi = λi(w).
So, apart from trivial cases, it is in general hard to get an exact evolution of the eigenvalues
and it is almost equivalent to actually solve the system (2.12) exactly. For linear systems
things are easier, since the eigenvalues do not depend on the solution and the propagation of
information can be determined exactly. For nonlinear systems, estimates on the eigenvalues
are needed to get information on the domain of dependence. Assume that for the time
interval [t−∆t, t], there exists bound on the eigenvalues as λ− < λi < λ+, then it is easy to
see that

Df,∆t(t, x) ⊂ [x− λ+∆t, x− λ−∆t] (2.17)

Now, one can define a domain of dependence also for the time explicit numerical scheme
(2.9). Given the formulas from above it is straightforward to see that

DF,∆t(t, x) = [x−∆x, x+ ∆x]. (2.18)

For the numerical scheme to produce reasonable approximations to the PDE, the Domain
of dependence of the PDE at a given point (t, x) should always be a subset of the Domain of
dependence of the numerical scheme. In other words, for the numerical scheme to compute
an approximation at a point (t, x), it should at least have all the information the PDE has
to determine the value u at that point. So the stability criterium can be formulated as

Df,∆t(t, x) ⊂ DF,∆t(t, x). (2.19)

Given the estimate (2.17) and the domain of the dependence of the numerical scheme
(2.18), (2.19) can further be rewritten as

∆x

∆t
CCFL ≤ λmax, (2.20)

where λmax = max(| λ− |, | λ+ |). CCFL is the Courant-Friedrichs-Lewy-number (CFL)-
number and was first determined in [48] as a necessary condition for stability. A classical
way to satisfy 2.20 is to choose CCFL = 1

2 .
Regarding the implicit in time discretization (2.11), the domain of dependence for any

(t, x) is actually the whole computational domain. Therefore, such a discretization is uncon-
ditionally stable. However, as mentioned before, a maybe nonlinear system of equations has
to be solved in order to determine the new values Un+1

i , which is, if single time integration
steps are compared, more costly then the explicit formulation (2.9). On the other hand, due
to the stability of the implicit scheme, larger time steps might be taken. To be more precise,
denote by CE and CI the computational cost to perform one Euler step with the explicit
(2.9) and the implicit integration step (2.11) respectively. Additionally, denote by dtE and
dtI the time increments that are allowed for the different discretization techniques such that
the CFL criterium holds. Even though the implicit time integrations does not need a time
step restriction due to stability, as will be explained in section 2.3, the numerical error scales
with the time increment. Therefore the time increment is restricted due to accuracy reasons.
Now, one can compute the time a computer would need to integrate the initial condition
in (2.1) up to a certain time T . For the explicit scheme, this gives TE = T CE

dtE
and for the
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2.2 Finite Volume Approach for Conservation Laws

implicit TI = T CI
dtI

. Therefore, if dtI compared to dtE is large enough, an implicit time
discretization can be computationally more efficient then its explicit counter part.

After defining the numerical scheme, one is interested, whether the scheme gives actually
reasonable approximations to the underlying conservation law. Moreover, can someone hope
for convergence to an exact solution of the conservation law? In general, it is very hard
to proof convergence and results depend heavily on the type of PDE under consideration.
For systems, there are a few numerical schemes for which convergence could be proven,
even when only one space dimension is considered. A fundamental result is due to Glimm
[63] by using the random choice method and DiPerna [57] using the front tracking method.
For a more comprehensive overview on the topic see for example [82]. Those two methods
are somewhat different from the classical finite volume framework presented here and their
results are not applicable to the presented framework. A more general but weaker theorem
on convergence is given by Lax and Wendroff [106], whereas the version here presented is
taken from [115].

Theorem 2.1.1 (Lax-Wendroff Convergence Theorem). Consider a sequence of grids
(∆x,∆t)l with ∆t → 0 where (∆x

∆t
)l is fixed and satisfying the CFL restriction (2.20). Denote

by Ul the numerical approximations computed with the method (2.9). Suppose Ul converges
to a function u. Then u(t, x) is a weak solution to (2.12). Furthermore, if the numerical
scheme satisfies the discrete entropy inequality (2.23), then the limiting weak solution u(t, x)
also satisfies the entropy inequalities.

The theorem assumes a convergence of the numerical approximations towards a solution.
This convergence needs to be specified in order for the theorem to be true.

Definition 2.1.3. A series of numerical approximations Ul is said to converge towards a
solution u if ∫ T

0

∫
D
|Ul(t, x)− u(t, x)|dxdt→ 0 for l→ 0, (2.21)

and
TV (Ul(t, ·)) ≤ R ∀t ∈ [0, T ], (2.22)

where TV (·) is the total variation of a function and can be defined as TV (V ) =
∫
D |v(x)x|dx.

Another property mentioned in the theorem is the discrete entropy inequality. Analogue
to section 1.1, for some methods a numerical entropy entropy-flux pair might be found such
that the method (2.9) rewrites as

ψ(Un+1
i ) ≤ ψ(Uni )− ∆t

δxi

(
Ψn
i+ 1

2

−Ψn
i− 1

2

)
. (2.23)

An alternative formulation of the Lax-Wendroff convergence theorem with rigorous proof
can be found in [53]. Keep in mind that theorem (2.1.1) does not ensure convergence.
But it might give some confidence in the computed approximations, when the numerical
approximations show a reasonable behavior with what is expected from an analysis of the
underlying PDE.
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2 Finite Volume Approximations of Hyperbolic PDEs

2.2 Approximate Riemann Solvers

2.2.1 The Godunov Method

Up to now it has not been specified how to choose the numerical flux functions Fi mentioned
in the previous section. Not surprisingly, there are many ways to define such a numerical
flux function. A family of methods for defining the numerical flux function is the so called
Godunov method [68]. Consider a numerical scheme of the type (2.9)

Un+1
i = Uni −

∆t

∆xi

(
Fn
i+ 1

2

− Fn
i− 1

2

)
, (2.24)

where the numerical flux functions Fn
i+ 1

2

only depends on the values from neighboring cells,

i.e.
Fn
i+ 1

2

= Fi+ 1
2
(Uni , U

n
i+1). (2.25)

The numerical approximations Uni can be seen as piecewise constant approximations to
the exact solution u and can be used to define a global approximation function U(x) =∑Nx

i=1 χViUi, where χVi is the characteristic function of the cell Vi. Now, U(x) is a piecewise
constant function, where it exhibits discontinuities at the cell interfaces xi+ 1

2
, giving rise to

Riemann problems as described in section 1.1. They can be reformulated as

ut + f(u)x = 0,

u0 =

{
Ui for x < 0

Ui+1 for x > 0
.

(2.26)

Let Wi+ 1
2
(t, x) denote the solution to the Riemann problem (2.26). Since it can be shown

that the solution is selfsimilar, i.e. along rays x
t = const the solution Wi+ 1

2
(t, x) is constant,

the solution is constant in time at the cell interface. Therefore, a suitable definition for the
numerical flux function is

Fn
i+ 1

2

= f(Wi+ 1
2
(t, 0)). (2.27)

This definition clearly satisfies the consistency property of a numerical flux function given
in definition 2.1.1. The flux is well defined apart from the cases when there is a discontinuity
at the cell interface. Therefore a more robust definition should be given here. Denote by
0− the limit x → 0 from the left and by 0+ the limit x → 0 from the right and rewrite the
numerical scheme (2.24) as

Un+1
i = Uni −

∆t

∆xi

(
Fn
i+ 1

2

− − Fn
i− 1

2

+

)
, (2.28)

and define the numerical fluxes asF
n

i+ 1
2

− = f(Wi+ 1
2
(t, 0−)),

Fn
i− 1

2

+ = f(Wi− 1
2
(t, 0+)).

(2.29)

These defintions are now well defined and the consistency property still holds. What is
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Fig. 2.2: Solution structure of a piecewise constant approximate Riemann solver.

left to check is if the numerical flux functions are still conservative. To this end, consider
that the only case where the limits Wi+ 1

2
(t, 0−) and Wi+ 1

2
(t, 0+) are different is when there

is a discontinuity at the interface. But then, the Rankine Hugoniout conditions (1.11) must
be satisfied. So, for a discontinuity moving with 0 velocity, there must hold f(uR) = f(uL)
and therefore it holds that

f(Wi+ 1
2
(t, x−

i+ 1
2

)) = f(Wi+ 1
2
(t, x+

i+ 1
2

)),

and thus the numerical flux functions are conservative.

2.2.2 A Model for an Approximate Riemann solver

Now, as has been described in section 1.1, finding the exact solution to the Riemann problem
can be hard since in general it involves solving a nonlinear system of equations. Since only
the values at the cell interfaces are used, most of the structure of the exact Riemann solution
is irrelevant. So the strategy of approximate Riemann solvers is to find an easy way to get
at least an approximation to the solution at the interface. There are different strategies to
do that. The idea behind the approaches discussed here is the observation, that especially
rarefaction waves are hard to compute. In practice it is easier to handle solutions to the
Riemann problem, where there are only shocks or contact discontinuities, i.e. constant states
separated by discontinuities. Therefore, a framework for approximate Riemann solvers is to
find an approximation Wi+ 1

2
(t, x) to the initial value problem (2.26) in the following form

Wi+ 1
2
(t, x) =



Ui if x
t < λ̄1,

w1 if λ̄1 <
x
t < λ̄2,

...,

wk−1 if λ̄K−1 <
x
t < λ̄K ,

Ui+1 if λ̄K < x
t ,

(2.30)
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Fig. 2.3: Juxtaposed Riemann problems. The CFl condition ensures, that the waves from
neighboring approximate Riemann solvers Wi± 1

2
(t, x) do not interact.

see also figure 2.2 for a graphical depiction. In order to find such a solution, different
strategies have been proposed. In the following, the HLL, Roe and Suliciu approximate
Riemann solvers are discussed. With the model (2.30), there are some advantages that can
be used. As has been mentioned in section 1.3, certain models have restrictions on the
domain where the dependent variables are defined, for example the positivity of density and
temperature. As in section 1.3 one has for a specific system a set ΩPhys that defines the
physical admissible states. Theorem 2.2.1 is helpful in the design of robust approximate
Riemann solvers.

Theorem 2.2.1 (Robustness of Approximate Riemann Solvers). Given the scheme (2.28)
and a CFL number of 1

2 , where the numerical flux is defined by the model (2.30). If the set
ΩPhys is convex and at each interface the states wk ∈ ΩPhys, then Un+1

i ∈ ΩPhys .

Proof. Consider at the cell interfaces xi± 1
2

the two approximate solutions Wi± 1
2
(t, x). From

the integral form of the conservation law it is clear that (2.28) can be rewritten as

Un+1
i = Uni −

∆t

∆xi

(
Fn
i+ 1

2

− Fn
i− 1

2

)
=

1

∆xi

∫ xi

x
i− 1

2

Wi− 1
2
(x, tn+1)dx+

1

∆xi

∫ xi+
1
2

xi

Wi+ 1
2
(x, tn+1)dx.

Since it is assumed, that Wi± 1
2
(t, x) ∈ ΩPhys and ΩPhys is convex, due to the convexity of

the integrals there is∫ xi

x
i− 1

2

Wi− 1
2
(x, tn+1)dx ∈ ΩPhys and

∫ xi+
1
2

xi

Wi+ 1
2
(x, tn+1)dx ∈ ΩPhys,

and therefore Un+1
i ∈ ΩPhys.
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2.2 Approximate Riemann Solvers

The role of the CFL condition is also depicted in figure 2.3. Another important property
of a numerical scheme is the entropy stability (2.23). How this stability property can be
determined from the framework of an approximate Riemann solver is answered in the next
theorem.

Theorem 2.2.2 (Stability of Approximate Riemann Solvers). Given a numerical scheme as
in theorem 2.2.1. Assume additionally, that there exists a convex entropy ψ to the underlying
conservation law. Then, if the approximate Riemann solvers Wi± 1

2
satisfy

∫ x
i+ 1

2

xi

ψ(Wi+ 1
2
(tn+1, x))dx ≤

∫ x
i+ 1

2

xi

ψ(Wi+ 1
2
(tn, x))dx

−∆t(Ψ(Wi+ 1
2
(tn, x−

i+ 1
2

))−Ψ(Wi+ 1
2
(tn, xi))),∫ xi

x
i− 1

2

ψ(Wi− 1
2
(tn+1, x))dx ≤

∫ xi

x
i− 1

2

ψ(Wi− 1
2
(tn, x))dx

−∆t(Ψ(Wi− 1
2
(tn, xi))−Ψ(Wi− 1

2
(tn, x+

i− 1
2

))),

(2.31)

then the numerical scheme satisfies the entropy inequality (2.23)

Proof. Observe, that under the CFL number 1
2 , the values Wi± 1

2
(tn, xi) are constant in

time. Also due to the selfsimilarity of the approximate Riemann solver W, the values
Wi± 1

2
(tn, x∓

i± 1
2

) are constant. Therefore, the numerical entropy fluxes Ψ are well defined,

and consistent with exact entropy fluxes if the exact fluxes are evaluated at the respective
values. Summing the two conditions in (2.31) gives

∫ xi

x
i− 1

2

ψ(Wi− 1
2
(tn+1, x))dx+

∫ x
i+ 1

2

xi

ψ(Wi+ 1
2
(tn+1, x))dx

≤
∫ x

i+ 1
2

x
i− 1

2

ψ(Uni )dx−∆t(Ψ(Wi+ 1
2
(tn, x−

i+ 1
2

))−Ψ(Wi− 1
2
(tn, x+

i− 1
2

))).

Furthermore since ψ is convex the Jensen inequality can be applied and the following
inequalities hold

∫ xi

x
i− 1

2

ψ(Wi− 1
2
(tn+1, x))dx+

∫ x
i+ 1

2

xi

ψ(Wi+ 1
2
(tn+1, x))dx ≥

ψ(

∫ xi

x
i− 1

2

Wi− 1
2
(tn+1, x)dx+

∫ x
i+ 1

2

xi

Wi+ 1
2
(tn+1, x)dx) = ψ(Un+1

i ),

which concludes the proof.

It should be remarked that, if for the definition of the numerical fluxes instead of the
approximate Riemann solver W the exact solution W is chosen, the requirements for the
theorems 2.2.2 and 2.2.1 are satisfied. Moreover, the usual Harten, Lax and van Leer entropy
consistency [78] reads:
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1

∆x

∫ xi+1

xi

ψ(Wi+ 1
2
(tn+1, x))dx ≤ 1

2
(ψ(Uni ) + ψ(Uni+1))− ∆t

∆x
(Ψ(Ui)−Ψ(Ui+1)). (2.32)

However, (2.32) is a consequence of the conditions (2.31). In fact, the formulations (2.31)
will be more convenient to derive in chapter 4.

Remark 2.2.1. The theorems 2.2.1 and 2.2.2 only apply for the explicit time stepping tech-
nique (2.9). If those theorems also hold if an implicit time stepping as (2.11) is chosen is not
obvious. Even though implicit time stepping techniques are crucial for the practical relevance
of the numerical schemes developed in chapter 5 and chapter 6, to proof the robustness in
this case is out of the scope of this work.

2.2.3 The HLL Approximate Riemann Solver

First, the HLL scheme by Harten, Lax and van Leer [78] is discussed. The idea in the HLL
framework is to achieve the model (2.30) by first stating some K wave speeds λ̄k. Now one
needs to solve for the unknown vectors U1, ..., UK−1. To make the model (2.30) consistent
with the integral form of the conservation law, choose M large enough and state the following
relation ∫ M

−M
WHLL(t, x)dx =

∫ M

−M
W (t, x)dx. (2.33)

Two things are to be observed in (2.33). First, due to the imposed solution structure
(2.30), the integrals can be evaluated exactly. The right hand side rewrites

1

2M

∫ M

−M
W (t, x)dx =

UL + UR
2

+ t(f(UL)− f(UR)). (2.34)

and the left side rewrites as

∫ M

−M
WHLL(t, x)dx = (M + tλ̄1)wi + t

K−1∑
i=1

wi(λ̄i+1 − λ̄i) + (M − tλ̄K)wi+1. (2.35)

Second, (2.33) gives m equations. In total there are (K − 1)m unknowns for the system
(2.30). In order to have a well posed system based on only (2.33) it must hold (K−1)m = m,
i.e K = 2. For K = 2 one has exactly the HLL scheme as proposed in [78]. There are
various extensions of the HLL scheme, most prominent the HLLC approximate Riemann
solver, where an additional third wave is modeled to capture the contact discontinuity of the
full Euler system (1.32). Then, additional relations to (2.33) have to be imposed in order to
get a well posed, hopefully linear, system for the unknowns U1, ..., UK−1.

2.2.4 The Suliciu Relaxation Approximate Riemann Solver

Approximate Riemann solvers based on relaxation systems are a relatively recent approach.
However, it is gaining popularity since its flexibility has been used by several authors to tackle
different problems, see for example (see [4, 10, 15, 18, 23, 24, 25, 37, 38, 46, 47, 61, 88, 116]).
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2.2 Approximate Riemann Solvers

A specific type of approximate Riemann solver is the Suliciu relaxation approach by Coquel
and Perthame [47]. It can be derived from the previous mentioned relaxation systems, see
section 1.2.2. One seeks to find another system approximating the conservation law and
solve the Riemann problem for this system instead to define the numerical fluxes. Different
approaches have been made to derive relaxation systems for the definition of numerical
fluxes, while best know is probably the Jin-Xin relaxation [88], as also has been introduced
in section 1.2.2. As it turns out, the HLL scheme can be reformulated as a variant of the
Jin-Xin relaxation [23]. The Jin-Xin relaxation is very general and can be used for any
conservation law. In this work, the relaxation approach is used to deal with a specific type
of system, namely the compressible Euler equations of gas dynamic. The Suliciu relaxation
is derived for specific systems, as for example for the compressible Euler equations, and it is
presented here following the notes in [23].

Consider the Euler equations in one space dimension
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p) = 0,

Et + (u(E + p))x = 0.

(2.36)

This system exhibits the full nonlinear dynamics which lead to difficulties when trying
to find the solution to the Riemann problem. The idea is to extend the system (2.36) by
an additional equation to get a simpler system. To this end, denote by p′ = ∂p

∂ρ |s=const and

multiply the first equation in (2.36) by p′ to get

pt + upx + ρp′ux = 0. (2.37)

Now, multiply (2.37) by ρ and the continuity equation in (2.36) by p. Adding these
equations gives then

(ρp)t + (ρup)x + ρ2p′ux = 0. (2.38)

Adding (2.38) to the system (2.36) is valid for smooth solutions. Keep in mind that the
pressure is actually already determined by the conserved variables. However, one wants to
resolve the Riemann problem at the cell interfaces and the nonconservative product ρ2p′

is hard to evaluate across discontinuities. Therefore, an additional degree of freedom is
introduced by replacing p with π, ρ2p′ by some constant c2 and adding a source term to
equation (2.38) to connect the new system to the original equations. The Suliciu relaxation
system now reads 

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + π)x = 0,

Et + (u(E + π))x = 0,

(ρπ)t + (ρuπ + c2u)x = ρ
ε (p− π).

(2.39)

The new variable π is called the relaxation pressure and can be understood as a per-
turbation of the original pressure p. Lemma 2.2.1 concerns the stability of the relaxation
system.

Lemma 2.2.1. The system (2.39) is a stable first order perturbation of the system (2.36)
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2 Finite Volume Approximations of Hyperbolic PDEs

and the subcharacteristic condition reads

c2 > ρ2p′. (2.40)

Proof. Performing a Chapman-Enskog expansion as has been introduced in section 1.2.2,
the first order perturbation of (2.39) reads

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = ε(1
ρ(c2 − ρ2p′)ux)x,

Et + (u(E + p))x = ε(1
ρ(c2 − ρ2p′)(u

2

2 )x)x.

(2.41)

Now, it is not clear how the system (2.39) may lead to an easier solution to the Riemann
problem, since now there is one more equation and also a source term present in the system.
To see the advantage of the relaxation approach, one takes a closer look at the homogeneous
part of system (2.39), i.e. setting ε =∞.

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + π)x = 0,

Et + (u(E + π))x = 0,

(ρπ)t + (ρuπ + c2u)x = 0.

(2.42)

Lemma 2.2.2 discusses the algebra and robustness of the system (2.42)

Lemma 2.2.2. The system (2.42) is hyperbolic and admits only linear degenerate eigenval-
ues λ ∈ {u, u± c

ρ} and therefore admits a solution of the form (2.30) as

WSR(t, x) =


UL if x

t < u− c
ρ ,

UCL if u− c
ρ <

x
t < u,

UCR if u < x
t < u+ c

ρ ,

UR if u+ c
ρ <

x
t .

(2.43)

Moreover, the intermediate states (2.43) can be computed explicitly and are give by

πC =
πL + πR

2
+ c

uL − uR
2

, uC =
uL + uR

2
+
πL − πR

2c
,

1

ρCR
=

1

ρR
+
πR − πC

c2
,

1

ρCL
=

1

ρL
+
πL − πC

c2
,

eCR = eR −
π2
R − π2

C

2c2
, eCL = eL −

π2
L − π2

C

2c2
,

(2.44)

and for c > 0 large enough, there is UCL, UCR ∈ Ωphys.

The solution structure (2.43) is also depicted in figure 2.4.

Proof. The system (2.42) can be diagonalized to get
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0

t
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n

u− c
ρ u u+ c

ρ

URUL

UCRUCL

Fig. 2.4: Solution for a Riemann problem for the homogeneous Suliciu relaxation system
(2.42).


(π + cu)t + (u+ c

ρ)(π + cu)x = 0,

(π − cu)t + (u− c
ρ)(π − cu)x = 0,

(1
ρ + π

c2
)t + u(1

ρ + π
c2

)x = 0,

(e− π2

2c2
)t + u(e− π2

2c2
)x = 0.

(2.45)

and the eigenvalues can be read directly from (2.45). To see that they are linear degenerate,
one could compute the eigenvectors and check the condition (1.15). A more direct approach
is now used here. From the definition of linear degeneracy (1.15) and the definition 1.1.6
for Riemann invariants, it is clear that an eigenvalue is linear degenerate if and only if it is
an Riemann invariant to its field. Moreover, any linear combination of Riemann invariants
is again a Riemann invariant. The diagonalized system (2.45) already provides the complete
set of Riemann invariants, i.e. all the characteristic variables to the other fields. Therefore,
if an eigenvalue λi can be expressed as a sum of the characteristics which are not transported
with its velocity, the eigenvalue will also be an invariant for its field and therefore linear
degenerate. The following relations hold

u± c

ρ
= ±c(1

ρ
+
π

c2
)∓ (π ∓ cu)

c
,

u =
(π + cu)

c
− (π − cu)

c
.

From (2.45) the Riemann invariants to a wave with a velocity λi, denoted by Φλi, can be
computed to be {

Φu± c
ρ

= {1
ρ + π

c2
, e− π2

2c2
, π ∓ cu},

Φu = {u, π}.
(2.46)

Since u and π are invariant across the center wave, the notation πCL = πCR = πC is
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introduced. Computing the intermediate states now involves solving the linear system arising
from the invariants described in (1.18) and is left to the reader.

For the positivity of the densities it is sufficient to demand the ordering of the eigenvalues
as

u− c

ρ
< u < u+

c

ρ
. (2.47)

Since the eigenvalues are also Riemann invariants, on can rewrite (2.47) in terms of the
intermediate states to get

uC −
c

ρCL
< uC < uC +

c

ρCR
.

Subtracting uC from these inequalities then easily gives ρCR, ρCL > 0 as long as c > 0.
For the positivity of the internal energies, one needs to expand the expression in (2.44) to
get

eCR = eR +
1
8(πL + πR)2 − π2

R
2

c2
+

(πL + πR)(uL − uR)

4c
+

(uL − uR)2

8
,

eCL = eL +
1
8(πL + πR)2 − π2

L
2

c2
+

(πL + πR)(uL − uR)

4c
+

(uL − uR)2

8
.

The positivity of the internal energy follows for c large enough. In fact, multiplying by c2

gives a second order polynomial in c and the roots can be computed explicitly.

It should be remarked that some physical applications demand not only that e > 0, but
also that the internal energy stays above a certain threshold emin. As long as emin < eR, eL,
the relations above give an explicit formula of how to choose the relaxation parameter c to
ensure this restriction.

After discussing the algebra and the properties of the Suliciu relaxation system, one might
be convinced that the homogeneous system has some good properties that might be useful for
an approximate Riemann solver. It is now discussed how to use the relaxation system (2.39)
to define a numerical scheme. In general, one would like the solutions to the relaxation system
to be close to the original system. Formally, this can be achieved by setting ε as small as
possible. However, this introduces numerical difficulties since the source term then becomes
stiff and very small time steps have to be chosen in order to ensure stability. A common
approach is to split the operators in (2.39) and perform two updates on the numerical
solution, i.e. an evolution step based on the homogeneous relaxation system (2.42) and
a projection step which involves only the source term. Define for this the numerical flux
function as in (2.29) to get for the evolution step

Ūn+1
i = Uni +

∆t

∆x
(F+

i− 1
2

− F−
i− 1

2

). (2.48)

The projection step is then implicitly solved

Un+1
i = Ūn+1

i +
ρ

ε
R(Un+1

i ). (2.49)
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π

ρ, u, e

Uni
Un+1
i

Ūn+1
i

relaxation step (2.48)
π = p(ρ, e)

projection step (2.49)

Fig. 2.5: Conceptional drawing of the operator splitting in the relaxation technique in phase
space.

The strategy is to solve (2.49) in the limit of ε → 0, keeping in mind, that one is actually
interested in approximating solutions to the Euler equations and not the relaxation system.
This procedure is also depicted in figure 2.5. One advantage of this method is, that the
relaxation pressure π actually does not need to be computed in the evolution step, because
the second step actually gives

πn+1
i = pn+1

i (ρn+1
i , Tn+1

i ).

Therefore one gets the relaxation pressure from the conserved quantities at the new time
step. So the description of the operator splitting is actually only for theoretical concerns,
but in the numerical code neither implicit solvers have to be implemented nor are extra
equations needed to describe the evolution of the additional variable.

Since the projection step only acts on the relaxation pressure π, Lemma 2.2.2 together
with Theorem 2.2.1 ensure, that the Suliciu relaxation gives a robust numerical scheme. The
entropy stability will be discussed in section 4. Even though this concerns the case of the
Euler equations with a gravitational potential, the proof can also be directly applied in this
case, since it does not involve the gravitational source term.

A general closing remark to the relaxation scheme concerns the efficiency of the scheme.
It has been shown, that the solution to the Riemann problem admits an explicit solution
and by the use of the projection method, there are never any extra equations introduced
in the numerical scheme. Therefore it can be concluded, that the relaxation schemes are
competitive if the computational costs are concerned.

2.2.5 The Roe Approximate Riemann Solver

The Roe approximate Riemann solver [147] is maybe most used in practice. Similar to
the Suliciu relaxation approach, one seeks to find a simpler system to solve for the Riemann
problem. The idea here is to linearize the flux function as f(u) = Au to get the approximating
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system
ut +Aux = 0.

The choice of the matrix A is not arbitrary. Roe suggested different criteria this matrix has
to satisfy and was able to derive such a matrix. However, the Roe scheme showed problems
when dealing with rarefactions, in particular sonic rarefactions. In this case the scheme was
shown to violate the discrete entropy inequality (2.23). Moreover, the positivity of density
and pressure is also not ensured in its original form. But entropy fixes for the Roe scheme
have been proposed and the reader is referred to [115] and [161] and references therein for
more details on that subject.

2.3 Higher Order Schemes

Solutions computed by a numerical scheme as (2.24) can in general only serve as approxima-
tions to the solutions of a conservation law. Information is lost by projecting data from the
continuum onto the finitely many volumes. As already been pointed out by the Lax-Wendroff
theorem 2.1.1, one might hope for convergence to an entropy solution of the conservation
law. However, in practice convergence is not the primary objective. Decreasing the size of
the volumes is costly in terms of computational effort and therefore the task is to set up a
numerical scheme that, given a set of volumes, gives the best approximation.

One way to measure the quality of the approximation is to analyze the error that has been
made in terms of the volume size and the timesteps. To analyze the error, start with the
integral form of a conservation law and integrate in time to get

∫ x
i+ 1

2

x
i− 1

2

u(tn+1)dx =

∫ x
i+ 1

2

x
i− 1

2

u(tn)dx−
∫ tn+1

tn

f(u(t, xi+ 1
2
)− f(u(t, xi− 1

2
)dt

=

∫ x
i+ 1

2

x
i− 1

2

u(tn)dx−∆t(f(u(tn, xi+ 1
2
)− f(u(tn, xi− 1

2
)) +O(∆t)

=

∫ x
i+ 1

2

x
i− 1

2

u(tn)dx−∆t(F (Uni+1, U
n
i )− F (Uni , U

n
i−1)) +O(∆t,∆x).

From the first line to the second line, the approximation given in (2.8) was used. Analogue
to that, the time implicit approximation (2.10) might be used. From the second to the third
line, the approximation in (2.5) has been used. Assuming smoothness and using Taylor
expansions gives for both cases the claimed order of accuracy of the approximation. This
short computation shows that the finite volume formulation is a first oder in time and space
approximation to the conservation law and therefore, the resulting cell averages are also only
first order accurate approximations to the exact solution.

One way to increase the quality of the numerical approximations given fixed volumes Vi
and fixed time increments ∆t is to increase the order of the scheme, i.e. to achieve an error
of O(∆p

t ,∆
p
x) with p > 1 in the above calculation. There are various ways in the literature

to achieve that, the reader is referred to [115] and [161] for a broader overview on the topic.
A general approach is to deal with the order in space and time separately.
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xi− 1
2

xi+ 1
2

x

Ui

Ui(x)

xixi−1 xi+1

Fig. 2.6: Linear reconstruction of the numerical approximation. Dashed lines show the
piecewise constant representation.

2.3.1 Higher Order in Space

For achieving higher order in space, the strategy of the Monotone Upstream-centered Scheme
for Conservation Laws (MUSCL), introduced by Van Leer [107],[108],[109]. The idea is
to modify the piecewise constant representation of the solution U(x) by piecewise linear
functions. More specific, consider the volume Vi, then the numerical approximation reads

Ui(x) = Ui + σi(x− xi), (2.50)

where, when Ui is a vector, the slopes σi are also vectors, see also figure 2.6. Observe that
the total amount of Ui in the cell Vi does not change after applying the reconstruction (2.50).
Therefore this type of reconstruction is also referred to as a conservative reconstruction.
Denoting by Ui(x

−
i+ 1

2

) the limit of the linear function Ui as x→ xi+ 1
2
, the numerical scheme

then reads

Un+1
i = Uni −

∆t

∆xi

(
F (Ui(x

−
i+ 1

2

), Ui+1(x+
i+ 1

2

))− F (Ui−1(x−
i− 1

2

), Ui(x
+
i− 1

2

))

)
. (2.51)

To compute the numerical fluxes, the approximate Riemann solvers derived in section 2.2.2
might be used. In fact, by formulating the numerical fluxes like this already uses a specific
interpretation of the linear functions. Recall that the use of the approximate Riemann solvers
relied on the fact, that a Riemann problem, i.e. an initial condition with two constant states
separated by a discontinuity, could be stated at the cell interfaces. Now, the initial conditions
are linear functions, which in turn leads to a so called generalized Riemann problem, see for
example [11]. However, solving the generalized Riemann problem can be cumbersome. To
avoid this, the linear function is projected onto two constant states inside the cell as

Ūi(x) =

Ui(x
+
i− 1

2

) if x < xi,

Ui(x
−
i+ 1

2

) if x > xi,
(2.52)
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xi− 1
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xi+ 1
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Ui(x
+
i− 1

2

)

Ui(x
−
i+ 1

2

)

xi

Fig. 2.7: Piecewise constant representation in the case of a conservative linear reconstruc-
tion. The dashed line represents the linear reconstruction.

see also figure 2.7. Also here the cell average value of the function does not change. The
reconstruction is conservative and with the piecewise constant interpretation leads more
naturally to the formulation of the higher order scheme (2.51).

Besides getting a better spatial resolution, these higher order methods require for stability
reasons a smaller CFL number. While in the first order case, the CFL could be derived
from the waves of the Riemann problem at the interfaces not to pass through the cell center,
and therefore resulting in the CFL number 1

2 , now there is a new Riemann problem at the
cell center. One usually does not compute the waves coming from the center problem, but
assumes that they are somehow bounded by the wave speeds coming from the Riemann
problems at the interfaces. Again, in order to avoid wave interactions, the waves are only
allowed to travel a quarter of the cell resulting in a CFL of 1

4 .
It should be remarked that it is not necessary to compute the linear functions in (2.50)

in terms of the conserved quantities U . Often a reconstruction in characteristic or primitive
variables is more convenient for practical applications. Denote this set of variables as P (U).
Then a reconstruction can be performed on those variables as

P (U)i(x) = P (U)i + σi(x− xi). (2.53)

However, if the reconstruction (2.53) is applied, the conservation property is lost. In the
end, the interpretation of piecewise constant data can help here. In [17] it has been found
that such a reconstruction can interpreted as projection onto 3 constant states, i.e.

Ūi(x) =


U(P )i(x

+
i− 1

2

) if x < xi− 1
4
,

UC if xi− 1
4
< x < xi+ 1

4
,

U(P )i(x
−
i+ 1

2

) if x > xi+ 1
4
,

(2.54)

where UC is determined by U(P )i(x
+
i− 1

2

)and U(P )i(x
−
i+ 1

2

) and is a physical relevant state, if

the left and right states are physical relevant, see also figure 2.8. However, the CFL number
has to be adjusted in order to ensure stability, i.e. CFL = 1

8 .
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Fig. 2.8: Piecewise constant representation in the case of a non-conservative linear recon-
struction. For stability, the waves from the Riemann problem are not allowed to cross the
dashed lines in a time step.

Up to now, it has not yet been mentioned, how the slopes σi are to be computed. In this
work, if not mentioned otherwise, the minmod limiter introduced in [148] is applied. It can
be written as

σi =


0 if (Ui+1 − Ui)(Ui − Ui−1) ≤ 0,

min(Ui+1 − Ui, Ui − Ui−1) if Ui+1 − Ui > 0,

max(Ui+1 − Ui, Ui − Ui−1) if Ui+1 − Ui < 0.

(2.55)

If U is a vector, the procedure is understood componentwise. If the minmod procedure
is applied to the conservative variables, it can be shown that the total variation of the
reconstructed solution is bounded by the piecewise constant solution. The total variation
has already been mentioned in the Lax-Wendrof convergence theorem. In fact, in can be
shown, that scalar conservation laws satisfy the property that the total variation diminishes.
Using this property also for the numerical scheme helps to reduce spurious oscillations,
especially near shocks. However, for systems, the TVD property does not hold, but the
philosophy is applied to the components.

In the end, there are limits to this TVD procedure. In fact, at local extrema, the minmod
procedure is at most first order accurate. This is obvious from the first case in (2.55), since at
an local extremum, the slopes have different sings on the left and the right. A more general
theorem on this issue is due to Godunov [67], where it is stated, that a linear monotone
method is at most first order accurate. Discussing the specifics and the implications of this
theorem, however, is out of the scope of this work and the reader is referred to [115].

A final remark on this issue should be devoted to the physical relevance of the reconstructed
states. If the minmod limiter is applied to the conservative variables, it is clear, that the
interface values lie in the interval of the cell averages, i.e. Ui(x

+
i− 1

2

), Ui(x
+
i− 1

2

) ∈ [Ui−1, Ui].

Therefore, if the physical relevant set is convex, so are the reconstructed states in the phys-
ical relevant set. With the interpretation of the piecewise constant reconstruction (2.52),
it is a straightforward application of the theorem (2.2.1) to ensure under a suitable CFL
condition the physical relevance of the updated states. If the minmod limiter is applied to a
different set of variables, further limitations may be applied to ensure the physical relevance

44



2 Finite Volume Approximations of Hyperbolic PDEs

of the states at the interface. If they are physical relevant, the projection (2.54) ensures the
physical relevance of the new cell average under a suitable CFL condition. For more detailed
information on this see again [17].

The method proposed here is a classical approach to achieve a second order accurate in
space method. As well there are numerous other ways to achieve second order [115],[161],
there are also methods which reconstruct even higher degrees of polynomials inside a cell to
achieve higher order of accuracy. Prominent examples of higher then second order accuracy
methods are the piecewise-parabolic method [44] and the essentially non-oscillatory (ENO)
methods [79],[76] and weighted ENO (WENO) methods [123], see for example [151] for an
overview.

2.3.2 Higher Order in Time

Recall, that during the derivation of the finite volume scheme, one arrives at the coupled
system of ODEs. Rewriting (2.6) gives the following form

∀Nxi=1 Ui,t +R(U)i = 0. (2.56)

Discretizing a system of ODEs is a classical problem in numerics and numerous methods
have been proposed, see for example [28], [101]. In the derivation of the finite volume scheme,
two ways of discretizing the system of ODEs have already been used, i.e. the forward Euler
and backward Euler method, resulting in

Un+1
i = Uni −∆tR(U)ni , (2.57)

and
Un+1
i = Uni −∆tR(U)n+1

i . (2.58)

A widely used class of higher order integration methods are the so called Runge-Kutta
methods. The strategy is to combine multiple forward and backward Euler steps. The
general form of an Runge-Kutta method, where the right hand side does not explicitly
depend on time, can be written as

Un+1
i = Uni −∆t

s∑
j=1

bjkj , (2.59)

where

∀sj=1 kj = R(U(tn) + ∆t(
s∑
l=1

aj,lkl))i. (2.60)

The coefficients a, b can be visualized in the Butcher tableau

0 a1,1 a2,1 . . . a1,s

c2 a2,1 a2,2 . . . a2,s
...

...
...

. . .
...

cs as,1 as,2 . . . as,s
b1 b2 . . . bs

.
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The Butcher table defines the chosen Runge-Kutta method exhaustively and some prop-
erties can bee seen directly. For example, a scheme is explicit, if aj,k = 0 for k ≥ l. For the
forward and backward Euler methods the tableau reads

0

1

1 1

1
.

As been mentioned before, those methods are only first order accurate. Two popular
second order schemes are the midpoint rule and Heuns method. Their Butcher tableau
reads

0
α α

1− 1
2α

1
2α

,

where for α = 1
2 one gets the midpoint rule and for α = 1, there is Heuns method. The

midpoint rule is used in the MUSCL-Hancock approach [110], where an estimate of the cell
interface values has to be computed at half time step, to then define the whole time interval
by the flux derived at half time step. In this work, if second order explicit time integration
is used, a version of Heuns method is used. To discuss the variant, write out Heuns method
as

Un+1
i = Uni −

∆t

2
(R(U(tn)) +R(U(tn+1))). (2.61)

This method can be decomposed into two forward Euler steps and a recombination as

Ūn+1
i = Uni −∆t

1

∆xi

(F (Un
i+ 1

2

− , U
n

i+ 1
2

+)− F (Un
i− 1

2

− , U
n

i− 1
2

+))︸ ︷︷ ︸
=R(U(tn))

,

Ūn+2
i = Ūn+1

i −∆t
1

∆xi

(F (Ūn+1

i+ 1
2

− , Ū
n+1

i+ 1
2

+)− F (Ūn+1

i− 1
2

− , Ū
n+1

i− 1
2

+))︸ ︷︷ ︸
=R(U(tn+1))

,

Un+1
i = Uni + 1

2(Ūn+2
i − Uni ),

(2.62)

where the values Ūn+1
i ,Ūn+2

i are just intermediate values that help to define the total
update. Now, the forward Euler steps have to satisfy a CFL criterium for stability. This
stability depends on the volume size ∆xi , but also on the states used to derive the numerical
fluxes. In the case of approximate Riemann solvers the wave speeds from the solution at
the interface are important to determine the maximal time step. Therefore the optimal, i.e.
largest, time step one can choose for the forward Euler steps may be different for each stage.
On the other hand, the formulation of the standard Runge-Kutta scheme involves only one
time increment ∆t. Now, one might try to guess the total time step ∆t in such a way, that
in both steps the CFL criterium is satisfied, which may lead to cumbersome calculations. A
way around that has been proposed in [14]. The modified Heun method reads

Ūn+1
i = Uni −

∆t1
∆xi

(F (Un
i+ 1

2

− , U
n

i+ 1
2

+)− F (Un
i− 1

2

− , U
n

i− 1
2

+)),

Ūn+2
i = Ūn+1

i − ∆t2
∆xi

(F (Ūn+1

i+ 1
2

− , Ū
n+1

i+ 1
2

+)− F (Ūn+1

i− 1
2

− , Ū
n+1

i− 1
2

+)),

Un+1
i = Uni +

2∆t1∆t2
(∆t1+∆t2 )2 (Ūn+2

i − Uni ),

(2.63)
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2 Finite Volume Approximations of Hyperbolic PDEs

where the corresponding time increments ∆t1 and ∆t2 can be chosen such that they satisfy
the CFL restriction for each forward Euler step. The total time increment ∆t = tn+1− tn is
given by

∆t =
2∆t1∆t2

∆t1 + ∆t2

. (2.64)

It should be remarked that, since for ∆t1 ,∆t2 > 0 there is

0 <
2∆t1∆t2

(∆t1 + ∆t2)2
< 1. (2.65)

Therefore, the final update for Un+1
i is a convex combination of the values Ūn+2

i and Uni .
Hence, if the scheme used to compute the forward Euler updates respects a convex physical
relevant set, the total time integration procedure will share the same property.

As already been mentioned before, explicit time integration is sometimes outperformed
by implicit time integration. Also in this work there are simulations where an implicit time
integration is crucial to get results in a reasonable amount of time. The method chosen here
is an explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. The
butcher tableau to this class of methods reads

0 0
c2 a2,1 α
...

...
...

. . .
...

cs as,1 as,2 . . . α

b1 b2 . . . bs

.

The first line in the butcher tableau gives that the first stage of the ESDIRK scheme is
computed explicitly. The fact that the matrix al,k has no entries above the diagonal means
that the s residuals can be computed one after another and no coupled system has to be
solved. The specific method chosen here is the ESDIRK34 scheme, where the first integer
denotes the order and the second the number of stages used. For more specifics on the
ESDIRK schemes and the implementation see for example [131].

As already mentioned, the drawback of implicit time discretizations is the need to solve
maybe nonlinear systems of equations. For simplicity, recall the form of the backward Euler
time discretization

Un+1
i = Uni −∆tR(U)n+1

i . (2.66)

Solving this system for the unknowns Un+1
i is equivalent to find the zero of the function

Q, where the Nx components of Q are defined as

Q(U)i = Un+1
i − Uni + ∆tR(U)n+1

i . (2.67)

This can be done by the Newton-Raphson method, where the root is found in an iterative
way. The new sequence element Uk+1 is determined by the previous one Uk by solving

∂

∂U
Q(Uk)(Uk+1 − Uk) = −Q(Uk), (2.68)

where ∂
∂UQ(U) is the Jacobian of Q with respect to the sequence element Uk.
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There are many ways to solve the system (2.68). Popular examples are the Krylov-subspace
and multigrid methods , see [129] and references therein. As the choice of the right method
for a specific problem and the efficiency gains due to for example preconditioning are crucial
for the succesful use of such methods, to deal with the specifics of such solvers is out of the
scope of this work. In fact, those methods will be used, since the schemes from chapter 5
and chapter 6 are implemented in the Seven-League-Hydro (SLH) code, where the design of
that code and the use of these iterative methods is described in [59, 131].

2.4 Finite Volume Approach for Balance Laws

Consider now a balance law of the form

ut + f(u)x = S(u). (2.69)

A common approach to discretize (2.69) is the fractional splitting method. First, the
system gets split into the conservative part and the non-homogeneous part as{

ut + f(u)x = 0,

ut = S(u).
(2.70)

Now, the two equations are discretized separately as for exampleUi,t + 1
∆xi

(Fi(U1, ..., UNx , xi+ 1
2
)− Fi(U1, ..., UNx , xi− 1

2
)) = 0,

Ui,t =
∫ xi+ 1

2
x
i− 1

2

S(u)dx.
(2.71)

The two operators are applied in an alternate way to evolve the cell averages Ui. Two well
know methods are the Godunov and the Strang splitting, see [115] for more details. However,
in some applications the resolution of near equilibrium solutions is of major importance.
Schemes that are consistent with an equilibrium of (2.69) are called well-balanced schemes.
The next definition helps to specify what is understood by the term consistent.

Definition 2.4.1. Let ueq be an equilibrium solution to (2.69), i.e. it satisfies

f(ueq)x = S(ueq). (2.72)

Consider now a discretization of ueq as Ueq and a numerical scheme approximating (2.69)
as

Dt(U) +Dx(f(U)) = DS(S(U)). (2.73)

A discretization (2.73) is called well-balanced if for the discrete equilibrium Ueq the discrete
time derivative Dt(Ueq) vanishes, i.e.

Dx(f(Ueq)) = DS(S(Ueq)). (2.74)

It is not obvious that the fractional splitting method (2.71) will satisfy the requirement
(2.74). In general, it will not. Therefore, if one applies the method (2.71) to a state some-
how close to the discrete equilibrium Ueq, the numerical scheme will produce unphysical
oscillations, see for example [62],[114].
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2 Finite Volume Approximations of Hyperbolic PDEs

The main issue is that the balance of the flux and the source term is not considered in
the splitting approach, since the two parts are computed separately. Another approach to
achieve a numerical method satisfying the definition 2.4.1 is to consider the inhomogeneous
Riemann problem at the cell interfaces arising from the (maybe modified) complete system
(2.69) as suggested by [72],[71],[42],[69],[70]. First, one can rederive the finite volume scheme
as in the homogeneous case to arrive at

Ui,t +
1

∆xi

(Fi(U1, ..., UNx , xi+ 1
2
)− Fi(U1, ..., UNx , xi− 1

2
)) =

∫ x
i+ 1

2

x
i− 1

2

Si(U1, ..., UNx , xi)dx.

(2.75)

The numerical flux functions Fi and the numerical source term Si are now evaluated
with respect to the inhomogeneous Riemann problem at the cell interfaces. To achieve the
resolution of the inhomogeneous Riemann problem, similar to section 1.2, one can multiply
the source term by the derivative of the function a(x) = x to arrive at the following form{

ut + f(u)x = S(u)ax,

at = 0.
(2.76)

However, this work concentrates on the numerical treatment of the Shallow Water equa-
tions and the Euler equations of gas dynamic. Both system are already in the form (2.76)
when writing {

ut + f(u)x = S(u)Zx,

Zt = 0.
(2.77)

and Z is either the topography term or the gravitational potential. Now, similar to the
case of conservation laws, one projects the data onto piecewise constant data. At the cell
interface xi+ 1

2
, an inhomogeneous Riemann problem arises with respect to the system (2.77)

and initial conditions

u(0, x) =

{
Uni if x < 0,

Un+1
i if x > 0,

Z(0, x) =

{
Zi if x < 0,

Zi+1 if x > 0.
(2.78)

At this point, it should be remarked that the general resolution of the inhomogeneous
Riemann problem involving the system (2.77) might be hard due to the non-conservative
product S(u)Zx, because at the interface Z as well as S(u) might be discontinuous and in
general this product is not defined in this case. A general way to give meaning to such a
product can be found in [128]. Here, the authors regularize the non-conservative product by
defining a parametrization of a path for S(u) to take through the discontinuity. However,
it is shown that the value of the non-conservative product depends on the choice of such a
path. While for conservative terms the choice of the path is irrelevant, the authors can not
provide a criterium to choose such a path in the non-conservative case. Despite that lack of
uniqueness, this theory has been used to develop the so called path-conservative schemes,
see for example [143],[142]. The authors use the given degree of freedom to specify a path,
which will guarantee the well-balanced property. However, the theory is not complete and
there are also practical examples, where path conservative schemes fail to converge or give
wrong shock speeds, see [30],[1].
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2.5 Finite Volume schemes in 2 space dimensions

Despite the difficulties in deriving the exact solution to the inhomogeneous Riemann prob-
lem, assume that one knows an (approximate) solution W(t, x) as in section 2.2. Define the
numerical fluxes as F

−
i+ 1

2

= f(Wi+ 1
2
(t, x−

i+ 1
2

)),

F+
i+ 1

2

= f(Wi+ 1
2
(t, x+

i+ 1
2

)).
(2.79)

The numerical scheme can be rewritten in the following form

Ui,t +
1

∆xi

(F+
i− 1

2

− F−
i+ 1

2

) =

1

∆xi

∫ xi

x
i− 1

2

Si(W(t, x)i− 1
2
)Zxdx+

1

∆xi

∫ x
i+ 1

2

xi

Si(W(t, x)i+ 1
2
)Zxdx, (2.80)

whileW(t, x)i− 1
2

denotes the solution to the Riemann problem at the interface xi− 1
2
. Two

things are important to realize in the formulation (2.80). First, since Z is constant in each
cell, the integrals on the right hand side vanishes and one is left with

Ui,t +
1

∆xi

(F+
i− 1

2

− F−
i+ 1

2

) = 0. (2.81)

Second, the scheme is not anymore in conservation form, since, due to the non-conservative
wave at the cell interface, F−

i+ 1
2

6= F+
i+ 1

2

. This should not be surprising, since the underlying

equations are also not in conservation form and the numerical scheme at this point just
reflects that property.

In the end, the form of the numerical scheme (2.81) is beneficial for determining the
well-balanced property. Suppose that the initial condition in the Riemann problem (2.78)
satisfies some discrete version of an equilibrium to (2.77). Therefore, if the solution to the
inhomogeneous Riemann problem also respects this equilibrium relation, the solution can be
written as W (t, x−

i+ 1
2

) = Ui,

W (t, x+
i+ 1

2

) = Ui+1.
(2.82)

Using the definition of the numerical fluxes (2.79) then gives directly Ui,t = 0 and there-
fore this approach satisfies the well-balanced definition 2.4.1. The well-balanced approximate
Riemann solver presented in this work all rely on achieving the property (2.82). Moreover, in
this section it is not specified if an explicit or an implicit time discretization is chosen. There-
fore, if the property (2.82) can be shown for an approximate Riemann solver, it guarantees
the well-balanced property for an explicit as well as for an implicit scheme.

2.5 Finite Volume schemes in 2 space dimensions

The final section in this chapter is concerned on how to set up a finite volume scheme in 2
space dimensions. Consider the conservation law
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2 Finite Volume Approximations of Hyperbolic PDEs

ut + f1,x + f2,y = 0. (2.83)

Consider now a cartesian mesh in two space dimensions as

Vi,j = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]. (2.84)

Similar to section 2.4, a popular approach to discretize the system (2.83) is to split the
operators, while here it is called a dimensional split.{

ut +f1,x = 0,

ut +f2,y = 0.
(2.85)

Now, one can evolve the data given in each volume Vi,j according to a discretization to
each system in (2.85). The Godunov and Strang splitting, are again two popular strategies
on how to combine the two discretizations. As long as the combination of the two systems
is convex, the robustness and stability of a finite volume scheme directly translates from the
one dimensional case, since in every substep only one dimensional problems are concerned.
However, the method has its drawbacks, especially in the case when the volumes Vi,j are
not rectangular. Even though this case is not considered in this work, it is desired that the
results may also be applicable for more complex meshes.

Alternatively to the splitting approach, the full integral over the volume Vi,j is considered
to derive the finite volume scheme. With similar approximations of the boundary terms as
in section 2.1, one arrives at the following form

Un+1
i,j = Uni −

∆t

∆xi

(
F1,i+ 1

2
,j − F1,i− 1

2
,j

)
− ∆t

∆yi

(
F2,i,j+ 1

2
− F2,i,j− 1

2

)
. (2.86)

The numerical flux functions can be defined by using an approximate Riemann solver as
described in section 2.2. Consider for this the 2 Riemann problems

ut + f1,x = 0,

u(0, x, y) =

{
Ui−1,j if x < 0,

Ui,j if x > 0,

and

ut + f1,y = 0,

u(0, x, y) =

{
Ui,j−1 if y < 0,

Ui,j if y > 0,

and denote their solution as Wi− 1
2
,j and Wi,j− 1

2
respectively. Then the numerical fluxes

in (2.86) are defined by
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2.6 Boundary Conditions

F
1,i− 1

2

+
,j

=Wi− 1
2
,j(t, 0

+, y) F
1,i+ 1

2

−
,j

=Wi+ 1
2
,j(t, 0

−, y),

F
2,i,j− 1

2

+ =Wi,j− 1
2
(t, x, 0+) F

2,i,j+ 1
2

− =Wi,j+ 1
2
(t, x, 0−),

(2.87)

and the numerical scheme writes

Un+1
i,j = Uni −

∆t

∆xi

(
F

1,i+ 1
2

−
,j
− F

1,i− 1
2

+
,j

)
− ∆t

∆yi

(
F

2,i,j+ 1
2

− − F
2,i,j− 1

2

+

)
. (2.88)

The conservation property from definition 2.1.1 directly translates to the scheme (2.88).
The robustness and stability of this approach can be derived from the respective one dimen-
sional approaches by adjusting the CFL number. Rewrite (2.88) into the following two step
form

Un+1
i,j =

1

2

(
Ū∆i,j + Ūi,∆j

)
, (2.89)

where

Ū∆i,j = Uni − 2
∆t

∆x

(
F

1,i+ 1
2

−
,j
− F

1,i− 1
2

+
,j

)
,

Ūi,∆j = Uni − 2
∆t

∆y

(
F

2,i,j+ 1
2

− − F
2,i,j− 1

2

+

)
.

(2.90)

In other words, the scheme (2.88) can be rewritten as a convex combination of one dimen-
sional schemes of the type (2.89). Therefore, if robustness and stability can be proven for
the one dimensional schemes, it holds also for the two dimensional scheme. However observe
that the CFL condition has to be adopted in this case to be 1

4 . Following the lines of [16]
and [20], these results also apply if a MUSCL approach is used to achieve second order in
space and can be extended to unstructured meshes as well, while further adjustment to the
CFL condition is needed.

2.6 Boundary Conditions

In contrast to the a theoretical analysis of PDEs, where infinitely large domains are allowed,
in numerical applications the domain D on which the approximations are computed is finite.
So one has to deal with the values of the solution on the boundary of D, denoted as ∂D.
Therefore the initial value problem (1.3) is extended as follows

u(t, x)t +∇ · f(u) = 0,

u(0, x) = u0(x),

∀x ∈ ∂D : u(t, x) = ū(t, x).

(2.91)

It is clear, that the definition of the boundary conditions can have a significant influence
on the solution. To study these effects is out of the scope of this work. Here, some of the
classical boundary conditions are used. To this end, for simplicity, consider the case of n = 1.
The domain D is then given by the simple interval D = [xL, xR]. In this work, three types
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2 Finite Volume Approximations of Hyperbolic PDEs

of boundary conditions are used. The first are the periodic boundary conditions given as

u(t, xL) = u(t, xR). (2.92)

The second type of boundary conditions are the so called Neuman boundary conditions{
u(t, xL)x = 0,

u(t, xR)x = 0.
(2.93)

The third type of boundary conditions used in this work are the solid wall boundary
conditions. They involve the velocity of the fluid, denoted here as u. They are formulated
as {

u(t, xL) = 0,

u(t, xR) = 0.
(2.94)

For a general domain the solid wall boundary conditions are formulated as n ·u = 0, where
n is the unit outward normal of ∂D. It basically states that there is no fluid flowing out or
into the domain.

The numerical treatment of boundary conditions is usually done by introducing so called
ghost cells. These ghost cells are extensions of the computational domain. Consider a
family of volumes Vi = [xi− 1

2
, xi+ 1

2
] covering D. Denote the cell at the left boundary as

V1 = [xL, x1+ 1
2
] and the cell at the right boundary as VNx = [xNx− 1

2
, xR]. Denoting the

spatial order of the scheme as p, then p ghost cells are imposed as well as on the left as on
the right side of the boundary as{

∀pk=1 V1−k = [xL − k∆x, xL − (k − 1)∆x],

∀pk=1 VNx+k = [xR + (k − 1)∆x, xR + k∆x].
(2.95)

Depending on the type of boundary conditions, numerical approximations Ūi are imposed
on the ghost cells depending on the values Ui inside the computational domain. For periodic
boundary conditions there is {

∀pk=1 Ū1−k = UNx−k+1,

∀pk=1 ŪNx+k = Uk.
(2.96)

For Neumann boundary conditions the ghost cells are set as{
∀pk=1 Ū1−k = U1,

∀pk=1 ŪNx+k = UNx .
(2.97)

In case of a solid wall boundary, one starts with the same procedure as for the Neumann
boundary conditions. But now the velocity components in the ghost cells have to be modified
in order to achieve the condition (2.94). Consider for this the velocity component in the cell
V1 as u1. This velocity can be decomposed into an orthogonal component u⊥1 and a parallel

component u
‖
1 with respect to the interface. The fluid velocities are then set as
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2.6 Boundary Conditions

{
∀pk=1 u1−k = −u⊥1 + u

‖
1,

∀pk=1 uNx+k = −u⊥Nx + u
‖
Nx
.

(2.98)

These boundary conditions are then used to determine the fluxes F+
1− 1

2

and F−
Nx+ 1

2

ac-

cording to the chosen numerical method.
It should be remarked, that the extension of these methods to 2 space dimensions can

be difficult. Especially if complex geometries are considered. However in this work, only
cartesian meshes are considered where the described methods extend intuitively.
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3 A Well-Balanced HLL Type Scheme for the
Shallow Water Equations

This chapter is concerned with the numerical approximation to the Shallow Water equations
introduced in section 1.5. The focus lies especially on the resolution of near equilibrium
solutions. The aim is to show that a scheme that satisfies the well-balanced property given
in definition 2.4.1 is superior to non well-balanced schemes especially when numerical ap-
proximations of near equilibrium solutions are concerned. However, robustness and entropy
stability are not considered in this chapter.

The derivation of well-balanced schemes for the Shallow Water equations has been an
active area of research since the pioneering work in [72] and [13]. Numerous schemes have
been developed to capture the Lake at Rest solutions (1.87), see for example [6],[118],[87],[26],
[69], [27],[125],[140],[143],[32],[149],[23]. The Lake at Rest solutions however are only a sub-
class of the general equilibria (1.86). Further research has been done to achieve the well-
balanced property also in the extended case of non zero velocities, see [31],[61],[170],[171],
[172],[173],[19],[41]. Especially in [172], the superiority of a well-balanced scheme for the
general case over schemes which only consider the Lake at Rest solution has been shown.
However, the proposed scheme involves a sophisticated splitting at the interface. Here the
aim is to derive such a scheme in a more simpler manner. Even more, especially when higher
order extensions are considered, the scheme presented in [172] relies on solving a third order
equation by using an iterative Newton method, which for one is costly. Additionally, due to
the fact that this third order equations has multiple zeros, the convergence to the right zero
is not obvious and therefore clever initial values for the iteration have to be chosen.

In the approach presented here, a HLL type scheme, see section 2.2.2, previous applied
to the Euler equations with gravity, see [54], is applied to the Shallow Water equations and
adapted to the case of general equilibria. The scheme presented here is close to a numerical
scheme derived in [19] for subcritical flow. However, the publication lacks numerical results
to show the performance of the scheme. Numerical results are presented at the end of the
chapter. Additionally, the technical issues in going higher order are avoided by solving the
third order equation exactly and an exhaustive analysis of the roots is presented.

3.1 HLL-type Schemes for the Shallow Water equations

Consider the Shallow water equations as presented in section 1.5 in one space dimension
ht + (hu)x = 0,

(hu)t +
(
hu2 + g h

2

2

)
x

= −ghBx.

Bt = 0

(3.1)

The system is hyperbolic with eigenvalues λ1,2 = u ±
√
gh. If the eigenvalues λ1,2 are of

different sign, the flow is considered to be subcritical. If the eigenvalues are of same sign,
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3.1 HLL-type Schemes for the Shallow Water equations

the flow is called supercritical and if one of the eigenvalues is zero, the flow is called critical.
Of special interest are the equilibria of the system. They can be computed by setting the
time derivative to 0 to get {

hu = const,
u2

2 + g(h+B) = const.
(3.2)

In the following, for brevity, it is sometimes used that E = u2

2 + g(h+B). As has already
been mentioned, a subclass of (3.2) are the so called Lake at Rest solutions. They are derived
by setting in (3.2) u = 0 and one has{

u = 0,

h+B = const.
(3.3)

The aim is to derive a well-balanced scheme for the general equilibria (3.2). In fact, for
the sake of comparison, a second scheme is derived, which is only consistent with the Lake
at Rest solutions.

3.1.1 Choice of the wave speeds

Consider the model of an approximate Riemann solver of the type (2.30). In a first step,
the number and the values of the artificial wave speeds have to be determined. Here it is
decided to work with two waves modeling the dynamics form the homogeneous part of the
system (3.1), denoted by λL and λR and one wave coming from the source term, denoted by
λ0.

Following the arguments of section 1.2 the presence of the source term leads to a standing
wave, i.e. it is set

λ0 = 0. (3.4)

The choice for the waves λL, λR follows the classical HLL framework for conservation laws.
Compute first

λR,± = uR ±
√
ghR,

λL,± = uL ±
√
ghL.

Then the artificial wave speeds are determined by

λ̄R = max (λL,+, λR,+) ,

λ̄L = min (λL,−, λR,−) .
(3.5)

However, for stability reasons, the wave speeds are usually rescaled in the following way

λR =

{
δ1λ̄R, if λ̄R > 0,
λ̄R
δ2
, if λ̄R < 0,

and λL =

{
δ1λ̄L , if λ̄L < 0,
λ̄L
δ2
, if λ̄L > 0,

(3.6)
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xi+ 1
2

t λ0

xt
n

tn+1

xi+1xi

λL λR

hR

(hu)R

hL

(hu)L

h∗R

(hu)∗R

h∗L

(hu)∗L

Fig. 3.1: Structure of the HLL type approximate Riemann solver W(t, x) in the subcritical
case.

for some δ1, δ2 > 1. Since the wave speed of the source term is fixed, it is not clear how
the waves are ordered. There are three possibilities.

• The subcritical case: λL < λ0 < λR

• The critical case: λL = λ0 < λR or λL < λ0 = λR

• The supercritical case: λ0 < λL < λR or λL < λR < λ0

Different strategies have to be applied in all three cases. In section 3.1.2 the scheme for
the subcritical case is derived. Section 3.1.3 deals with the supercritical case and in section
3.1.4 the critical case is considered.

3.1.2 The HLL-type Model for subcritical Flow

Consider the following model of an approximate Riemann solver of the type (2.30) for the
subcritical case

Wsub(t, x) =


wL if x

t < λL,

w∗L if λL <
x
t < λ0,

w∗R if λ0 <
x
t < λR,

wR if λR <
x
t ,

(3.7)

where the vector of dependent variables is w = (h, hu,B). Since the evolution of the bottom
topography B is decoupled from the system, one directly has that

B∗L = BL B∗R = BR. (3.8)

Therefore the remaining unknowns are h∗L, h
∗
R, (hu)∗L, (hu)∗R, see also figure 3.1.
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3.1 HLL-type Schemes for the Shallow Water equations

As introduced in section 2.2.2, the strategy to solve for the unknowns is to make use of
the consistency relation (2.33), which writes in this case

1

∆x

∫ xi+1

xi

W
( x

tn+1
, wL, wR

)
dx =

1

∆x

∫ xi+1

xi

W
( x

tn+1
, wL, wR

)
dx, (3.9)

where W is the exact solution to the Riemann problem. Following the notions in section
2.2.2, the evaluation of the two components of (3.9) gives for the waterheight

(
1

2
+ λL

∆t

∆x

)
hL − λL

∆t

∆x
h?L + λR

∆t

∆x
h?R +

(
1

2
− λR

∆t

∆x

)
hR

=
hL + hR

2
− ∆t

∆x
(hRuR − hLuL), (3.10)

and for the discharge

(
1

2
+ λL

∆t

∆x

)
(hu)L − λL

∆t

∆x
(hu)?L + λR

∆t

∆x
(hu)?R +

(
1

2
− λR

∆t

∆x

)
(hu)R =

hLuL + hRuR
2

− ∆t

∆x
(hRu

2
R + g

h2
R

2
− hLu2

L − g
h2
L

2
)

− 1

∆x

∫ xi+1

xi

∫ tn+1

tn
gh
(x
t
, wL, wR

)
Bxdtdx, (3.11)

where h
(
x
t , wL, wR

)
denotes the exact solution for the waterheight to the Riemann prob-

lem. A first step is to approximate the integral in the momentum equation due to the source
term by a quadrature

1

∆x

∫ xi+1

xi

∫ tn+1

tn
h
(x
t
, wL, wR

)
Bxdtdx =

∆t

∆x
ghBx. (3.12)

As it will turn out, the evaluation of this approximation will strongly influence the well-
balanced properties. How this quadrature term is evaluated will be discussed in section
3.1.5.

The equations (3.10) and (3.11) only give two relations for the 4 unknowns h∗L, h
∗
R, (hu)∗L

and (hu)∗R and additional equations have to be imposed. To find the missing two relations,
the equilibrium relations are imposed on the λ0 wave to have

(hu)?R = (hu)?L, (3.13)(
1

2
(
(hu)∗L
h∗L

)2 + g(h∗L +BL)

)
=

(
1

2
(
(hu)∗R
h∗R

)2 + g(h∗R +BR)

)
. (3.14)

Observe that equation (3.14) is non-linear. In fact, if equation (3.14) is used to solve for
the intermediate states, the roots of a fifth order polynomial have to be found, where in
general there is no explicit expression for these roots. However, it has been proven in [19],
that, if equation (3.14) is used, under some conditions on the wave speeds λL and λR, the
scheme would be robust and entropy stable. The goal here is to develop a practical scheme
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and therefore it is suggested to linearize (3.14) in the following way(
1

2
(
(hu)∗L
hL

)2 + g(h∗L +BL)

)
=

(
1

2
(
(hu)∗R
hR

)2 + g(h∗R +BR)

)
. (3.15)

The exact impact of the linearization is difficult to analyze. However, we would like to
remark that in the case of an equilibrium solution, the solution to h∗L,R should be hL,R. In
this case, the linearization is actually exact and no error is introduced.

The solutions to the intermediate states can now be found when using (3.10),(3.11),(3.13)
and (3.15) and are given by

h?L =
λRhR − λLhL − λRD + (hu)L − (hu)R

λR − λL
, (3.16)

h?R =
λRhR − λLhL − λLD + (hu)L − (hu)R

λR − λL
, (3.17)

(hu)?L,R =
λRhRuR − λLhLuL − (hRu

2
R + g

h2
R
2 − hLu

2
L − g

h2
L
2 )− ghBx

λR − λL
, (3.18)

where

D =
(hu)∗2

2g
(

1

h2
L

− 1

h2
R

) + (BL −BR). (3.19)

The solutions to the intermediate states are somehow stable as long as (λR − λL) is not
small or when hL and hR are sufficiently large. Both cases relate to a regime with zero or
only small waterheight. However, the case of wet/dry areas is not considered in this chapter.

3.1.3 The Supercritical Case

This section is devoted to the derivation of an HLL type scheme in the supercritical case.
For symmetry reasons it is enough to analyze the case λL,R > 0. The model (3.7) is therefore
modified as

Wsup(t, x) =


wL if x

t < λ0,

w∗L if λ0 <
x
t < λL,

w∗R if λL <
x
t < λR,

wR if λR <
x
t .

(3.20)

As in the subcritical case, the evolution of the bottom topography B is decoupled from
the system and one directly has

B∗L = BL B∗R = BR, (3.21)

and the remaining unknowns are h∗L, h
∗
R, (hu)∗L, (hu)∗R, see also figure 3.2. However, by the

model (3.20), the flux for the cell Vi is already determined by the initial condition. To get
the flux for the cell Vi+1 one only has to solve for h∗L, (hu)∗L.

Similar to the subcritical case, the consistency relations are applied to get for the water-
height
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xi+ 1
2

t λ0

xt
n

tn+1

xi+1xi

λL λR

hR

(hu)R

hL

(hu)L

h∗R

(hu)∗R

h∗L

(hu)∗L

Fig. 3.2: Structure of the HLL type approximate Riemann solver W(t, x) for supercritical
flows.

1

2
hL+λL

∆t

∆x
h?L+(λR − λL)

∆t

∆x
h?R+

(
1

2
− λR

∆t

∆x

)
hR =

hL + hR
2

− ∆t

∆x
(hRuR−hLuL),

(3.22)

and for the discharge

1

2
(hu)L + λL

∆t

∆x
(hu)?L + (λR − λL)

∆t

∆x
(hu)?R +

(
1

2
− λR

∆t

∆x

)
(hu)R =

hLuL + hRuR
2

− ∆t

∆x
(hRu

2
R + g

h2
R

2
− hLu2

L − g
h2
L

2
)− ∆t

∆x
ghBx, (3.23)

where the source term already has been averaged. Two more equations are needed to solve
for the unknowns. It is suggested to impose the equilibrium equations across the λ0 wave.
Therefore, the following relations are imposed

(hu)L = (hu)?L, (3.24)(
1

2
(
(hu)L
hL

)2 + g(hL +BL)

)
=

(
1

2
(
(hu)∗L
h∗L

)2 + g(h∗L +BR)

)
. (3.25)

Observe, that the equilibrium relations (3.24) and (3.25) allow to directly compute the
dependent variables on the right side of the cell interface. Equation (3.24) gives directly the
discharge. Therefore, equation (3.25) can be rewritten as a third order polynomial in h∗L to
get

h∗
3

L +
(gBR − EL)

g
h∗

2

L +
(hu)2

L

2g
= 0. (3.26)

How to solve for the roots of (3.26) is discussed in detail in section 3.3.
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3 A Well-Balanced HLL Type Scheme for the Shallow Water Equations

Even though they are not needed for the definition of the numerical fluxes, the solutions
to the other unknowns are given for completion. There is for the waterheight

h?R =
(λRhR − λLh?L)− (hRuR − hLuL)

λR − λL
, (3.27)

and for the discharge

(hu)?R =
λR(hu)R − λL(hu)L − (hRu

2
R + g

h2
R
2 − hLu

2
L − g

h2
L
2 )− ghBx

λR − λL
. (3.28)

However, if one would like to do an analysis regarding the robustness and the stability of
this approach, following the theorems 2.2.1 and 2.2.2, the values defined in (3.27) and (3.28)
are important as well. But this kind of analysis is omitted for the schemes described in this
section.

3.1.4 The Critical Case

Finally, consider the transcritical case, i.e. λL = λ0 = 0. Again, for symmetry reasons, the
case λR = 0 is omitted here. The model for the HLL type scheme reads then

Wcrit(t, x) =


wL if x

t < λ0,

w∗ if λ0 <
x
t < λR,

wR if λR <
x
t ,

(3.29)

see also figure 3.3. The model (3.29) only admits two unknowns and the application of
the consistency relations is sufficient to find the solution. Similar to (3.22) and (3.23) one
gets

1

2
hL + λR

∆t

∆x
h? +

(
1

2
− λR

∆t

∆x

)
hR =

hL + hR
2

− ∆t

∆x
(hRuR − hLuL), (3.30)

and for the discharge

1

2
(hu)L + λR

∆t

∆x
(hu)? +

(
1

2
− λR

∆t

∆x

)
(hu)R =

hLuL + hRuR
2

− ∆t

∆x
(hRu

2
R + g

h2
R

2
− hLu2

L − g
h2
L

2
)− ∆t

∆x
ghBx. (3.31)

Therefore, the intermediate states can be directly computed as

h? = hR −
hRuR − hLuL

λR
, (3.32)

(hu)? = (hu)R −
(hRu

2
R + g

h2
R
2 − hLu

2
L − g

h2
L
2 ) + ghBx

λR
. (3.33)
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xi+ 1
2

t λ0 = λL

xt
n

tn+1

xi+1xi

λR

hR

(hu)R

hL

(hu)L

h∗

(hu)∗

Fig. 3.3: Structure of the HLL type approximate Riemann solver W(t, x) for critical flows.

3.1.5 The Well-Balanced Source Average

As it turns out, the quadrature (3.12) of the source term will be crucial in order to ensure
the well-balanced property given in definition 2.4.1.

In definition 2.4.1, the well-balanced property of a scheme is defined with respect to a
discretization of an equilibrium. Accordingly, the data Ui are said to be in equilibrium,
when they satisfy

∀Nxi=0

{
(hu)i = (hu)i+1,

(u
2

2 + g(h+B))i = (u
2

2 + g(h+B))i+1,
(3.34)

and are said to satisfy the Lake at Rest, when there is

∀Nxi=0

{
ui = 0,

(h+B)i = (h+B)i+1.
(3.35)

Observe, that the second equation in (3.34) is a nonlinear function of the dependent
variables h and hu. In the numerical experiments there will be initial conditions derived
on the continuum. The projection onto the discrete data Ui will be taken as pointwise, i.e.
Ui = u(xi) rather than the average over the volume. However, due to the midpoint rule,
the given projection is second order accurate to the cell average value and since only up to
second order accurate schemes are considered, no problems are expected from this slightly
different discretization.

Following the arguments given in section 2.4, to achieve the well-balanced property it is
sufficient to demand that in equilibrium there must hold

W(t, 0−) = wL and W(t, 0+) = wR. (3.36)

The Lemma 3.1.1 concerns the well-balanced properties of the HLL scheme for subcritical
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3 A Well-Balanced HLL Type Scheme for the Shallow Water Equations

flows.

Lemma 3.1.1. Given data that satisfy the relation (3.34), then, if the source quadrature is
defined as

ghBx =
(hu)L + (hu)R

2
(uL − uR) +

(hR + hL)

2
(
u2
R

2
−
u2
L

2
) +

g

2
(BR −BL)(hR + hL), (3.37)

the HLL scheme from section 3.1.2 satisfies the relation (3.36) and is therefore well-balanced.

Given data that satisfy the relation (3.35), then, if the source quadrature is defined as

ghBx =
g

2
(BR −BL)(hR + hL), (3.38)

or by (3.37), the HLL scheme from section 3.1.2 satisfies the relation (3.36) and is therefore
well-balanced.

Proof. The strategy is to first proof the well-balanced property for the discharge and then for
the waterheights. Given data in equilibrium as in (3.34) and the source average determined
by (3.37), there is

(hu)?L,R =
λRhRuR − λLhLuL − (hRu

2
R + g

h2
R
2 − hLu

2
L − g

h2
L
2 )− ghBx

λR − λL

= hu+ g
(hR + hL)

2

hL − hR − (
u2
R

2g −
u2
L

2g )− (BR −BL)

λR − λL
= hu.

Furthermore, for the waterheights it can be found that

D =
(hu)∗2

2g
(

1

h2
L

− 1

h2
R

) + (BL −BR) =
1

2g
(u2
L − u2

R) + (BL −BR) = hR − hL,

and therefore

h?L =
λRhR − λLhL − λRD + qL − qR

λR − λL
=
λRhR − λLhL − λR(hR − hL)

λR − λL
= hL,

and

h?R =
λRhR − λLhL + λLD + qL − qR

λR − λL
=
λRhR − λLhL + λL(hR − hL)

λR − λL
= hR.

If, on the other hand, the data is in an equilibrium as (3.35) and the source average (3.38)
is used, then there is

(hu)?L,R =
g
2(h2

R − h2
L)− ghBx

λR − λL
=
g

2
(hR + hL)

(hR − hL)− (BR −BL)

λR − λL
= 0.

For the waterheights there is

D = BL −BR,
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and therefore

h?L =
λRhR − λLhL − λR(BL −BR)

λR − λL
=

(λR − λL)hL
λR − λL

= hL,

and

h?R =
λRhR − λLhL + λL(BL −BR)

λR − λL
=

(λR − λL)hR
λR − λL

= hR.

Finally, it holds that for u = 0 the definitions (3.38) and (3.37) are equivalent.

It should be remarked, that the quadrature (3.38) will not give a well-balanced scheme in
the case of a general equilibrium. To see this, take data as in (3.34) and use the quadrature
(3.38) to determine the discharge to get

(hu)?L,R = hu+
hu(uR − uL) + g(

u2
R
2 −

u2
L
2 )hL+hR

2

λR − λL
. (3.39)

However, observe that if ∆x → 0, then (hu)?L,R → hu and therefore (3.38) is in this limit
consistent with the general equilibrium. Therefore, it is expected that with smaller mesh
size, the numerical errors will decrease and therefore the general equilibrium gets better
resolved when using the quadrature (3.38).

On the other hand, the quadrature (3.37) is not consistent with the case of a flat bottom
topography. In this case, the quadrature should go to 0 and the standard HLL scheme should
be recovered. This problem is not unique to this approach and suggestions in the literature
are that one artificially enforces this consistency by setting the quadrature to 0 depending
on some thresholds on (BR − BL). This is surely problem dependent and is not considered
in this work.

Next the well-balanced properties of the schemes in the critical and supercritical case are
discussed.

Lemma 3.1.2. Given data that satisfy the relation (3.34), then, if the source quadrature is
defined by (3.37), the schemes from section 3.1.4 and section 3.1.3 satisfy the relation (3.36)
and are therefore well-balanced.

Proof. In both cases the limit W(t, 0−) = wL from (3.36) is trivial, since it is imposed in
the model. For the model in the critical case (3.29) it remains to check that h∗ = hR and
(hu)∗ = (hu)R. It holds from (3.32) that

h? = hR −
hu− hu
λR

= hR,

and following the proof of lemma 3.1.1 for equation (3.33) there is also

(hu)? = (hu)R −
(hRu

2
R + g

h2
R
2 − hLu

2
L − g

h2
L
2 ) + ghBx

λR
= (hu).

The model in the supercritical case satisfies condition (3.36) for the discharge (hu) by
definition through equation (3.24). For the waterheight one has to realize that, in the case
of equilibrium data (3.34), h∗L = hR is a solution to (3.25). However, in general there is at
most one, but up to three non-complex solutions to (3.25). In section 3.3, the structure of
these solutions is analyzed and one can show that, if the data is physical relevant, there is
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only one supercritical and only one subcritical solution to (3.25). Choosing in this case the
supercritical root gives then the well-balanced result.

Even though the property (3.36) already holds, it should be remarked that, since in the
supercritical case there is h∗L = hR, from (3.27) and (3.28) there is also h∗R = hR and
(hu)∗R = (hu).

3.1.6 On the Continuous Transition between the Models

This section concerns the transition of the numerical scheme when the flow changes type
between sub- and supercritical. The models in the sections 3.1.2-3.1.4 are distinct and well
behaved transition between them is needed to give reasonable approximations.

As has been pointed out in section 2.1, under the condition CFL < 1
2 , computing the

update in the cell Vi as

Un+1
i = Uni +

∆t

∆xi

(F+
i− 1

2

− F−
i+ 1

2

), (3.40)

is equivalent to use the integral over the approximate Riemann solver at the time tn+1 as

∆xU
n+1
i =

∫ xi

x
i− 1

2

Wi− 1
2
(tn+1, x)dx+

∫ x
i+ 1

2

xi

Wi+ 1
2
(tn+1, x)dx. (3.41)

The models (3.7),(3.20) and (3.29) depend on parameterized wave speeds λL,R. Let this
be denoted byW(t, x, λL,R). What is meant exactly by a continuous transition is made clear
in definition 3.1.1.

Definition 3.1.1. The transition from model A to B is continuous at the interface xi+ 1
2
, if∫ x

i+ 1
2

xi

WA(tn+1, x, λ)dx −−−→
λ→K

∫ x
i+ 1

2

xi

WB(tn+1, x, λ)dx,∫ xi+1

x
i+ 1

2

WA(tn+1, x, λ)dx −−−→
λ→K

∫ xi+1

x
i+ 1

2

WB(tn+1, x, λ)dx,
(3.42)

and is denoted by WA −−−→
λ→K

WB .

Theorem 3.1.1. If the intermediate state (3.26) is bounded in the limit λL → 0, then there
is

Wsub −−−−−→
λL→0−

Wcrit and Wsup −−−−−→
λL→0+

Wcrit. (3.43)

Proof. First compute the integrals from definition 3.1.1 to get∫ x
i+ 1

2

xi

Wsub(tn+1, x, λ)dx =
∆x

2
((1− λL)wL + λLw

∗
sub,L),∫ xi+1

x
i+ 1

2

Wsub(tn+1, x, λ)dx =
∆x

2
((1− λR)wR + λRw

∗
sub,R),

65



3.2 Second order Extension

and ∫ x
i+ 1

2

xi

Wsup(tn+1, x, λ)dx =
∆x

2
wL,∫ xi+1

x
i+ 1

2

Wsup(tn+1, x, λ)dx =
∆x

2
((1− λR)wR + (λR − λL)w∗sup,R + λLw

∗
sup,L),

and

∫ x
i+ 1

2

xi

Wcrit(tn+1, x, λ)dx =
∆x

2
wL,∫ xi+1

x
i+ 1

2

Wcrit(tn+1, x, λ)dx =
∆x

2
((1− λR)wR + λRw

∗
crit,R).

In order to show Wsub −−−−−→
λL→0−

Wcrit, it is sufficient to show that w∗sub,L is bounded and

that w∗sub,R → w∗crit,R. For the subcritical case this is straightforward by (3.18) and (3.16) if
wet/dry areas are not considered.

Moreover, it holds that there is (3.17) −−−−−→
λL→0−

(3.32) and (3.18) −−−−−→
λL→0−

(3.33).

In order to show Wsup −−−−−→
λL→0+

Wcrit, it is sufficient to show that w∗sup,L is bounded and

that w∗sup,R → w∗crit,R. The bound on w∗sup,L is given by assumption and it also can easily be
seen that there is (3.27) −−−−−→

λL→0+
(3.32) and (3.28) −−−−−→

λL→0+
(3.33).

In section 3.3 it is made clear that the intermediate state (3.26) is in fact bounded by the
critical state or the subcritical root. Therefore, theorem 3.1.1 gives confidence in computing
transcritical flows.

3.2 Second order Extension

This section is devoted to find a higher order extension to the previous described finite
volume scheme. This will work along the lines of section 2.3.1, where it is described to find a
linear representation of the dependent variables to get a better estimate for the cell interface
values. As also described in section 2.3.1, this can be done in any set of variables. This
approach here follows the surface gradient method developed in [175] for the Lake at Rest
solutions. The idea is to reconstruct deviations from an equilibrium state. To apply the

surface gradient method, define the equilibrium variables q = hu and E = q2

2h2 + g(h + B).
These will be constant in equilibrium and define the surface to which the slopes are computed.
The strategy is then to compute the slopes in the equilibrium variables q and E to compute
the interface values. Then, the interface values in equilibrium variables have to be projected
to the dependent variables h, hu.

The slopes in cell Vi in the equilibrium variables are computed as

σEi = minmod (Ei+1 − Ei, Ei − Ei−1) ,

σqi = minmod (qi+1 − qi, qi − qi−1) .
(3.44)
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Therefore, the interface values can be computed as

Ei+1/2− = Ei +
∆x

2
σEx,i, (3.45)

Ei−1/2+ = Ei −
∆x

2
σEx,i, (3.46)

qi+1/2− = qi +
∆x

2
σqx,i, (3.47)

qi−1/2+ = qi +
∆x

2
σqx,i. (3.48)

The bottom topography is not reconstructed in this approach because

Bi −Bi−1

∆x
= Bx(xi− 1

2
) +O(∆2

x), (3.49)

as long as B is sufficiently smooth. To get the respective values for the dependent variables
h and hu one has to solve a third order polynomial in the waterheight as

P (hi+1/2−) = h3
i+1/2−

+
gBi − Ei+1/2−

g
h2
i+1/2−

+
q2
i+1/2−

2g

!
= 0,

P (hi−1/2+) = h3
i−1/2+ +

gBi − Ei−1/2+

g
h2
i−1/2+ +

q2
i−1/2+

2g

!
= 0.

(3.50)

How to solve for the roots in (3.50) is described in section 3.3. As it turns out, if there
are positive roots to (3.50), then there is a sub- and a supercritical one. The strategy also
applied in [172] is not to change the type of the flow by the reconstruction, i.e. if the flow
is subcritical at the cell center, then also the subcritical roots are taken at the interface and
vice versa.

The reconstruction procedure described here does not guarantee that the interface values
in the equilibrium variables give real and positive roots. A more detailed analysis may be
needed on this subject, but is omitted in this work. Instead, if no positive real roots can be
found, it is decided to go back to first order and set hi+1/2− = hi−1/2+ = hi.

If the interface values for the dependent variables are known, the fluxes can be computed
by the models (3.7),(3.20) and (3.29). However, the source averages (3.37) and (3.38) are
computed with respect to the cell center values.

Finally, it is straightforward to see that this second order extension gives a well-balanced
scheme. In equilibrium the slopes computed in (3.44) are zero and therefore the interface
values for the equilibrium variables coincide with the equilibrium variables at the cell center.
When computing the dependent variabels again, not changing the type of the flow guarantees
that the cell centered value for the waterheight is recovered. This follows again from the fact
that there is only one root for for each polynomial in (3.50) in the sub- or the supercritical
regime. Having computed the source term quadrature with respect to the cell centered values
immediately leads back to lemma 3.1.1.
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3.3 Finding the Roots

In the second order extension (3.2) and in the model for supersonic flow (3.20), the roots
of a third order polynomial have to be found to compute the waterheight. Defining q = hu

and the energy E = q2

2h2 + g (h+B), the polynomial in h reads

P (h) = h3 +
gB − E

g
h2 +

q2

2g

= h3 + a0h
2 + a2.

(3.51)

From the fundamental theorem of algebra it is known that the polynomial in (3.51) has
either one or three real roots. The purpose of this section is to analyze, which values a0 and
a2 admit one or three real roots and, if these roots are positive, to which flow regimes these
roots belong, i.e. sub- or supercritical, and compute them explicitly.

3.3.1 Structure of P in the Physical relevant Case

From the definition of the energy E, one immediately has two properties of the coefficients:

a0 < 0, a2 ≥ 0. (3.52)

The polynomial P (h) is now analyzed for parameters that satisfy (3.52). Since the leading
coefficient of P (h) is positive, one has that

lim
h→−∞

P (h) = −∞ and lim
h→+∞

P (h) = +∞. (3.53)

Now compute the extrema of of P (h). Setting

∂P (h)

∂h
= 3h2 + 2a0h

!
= 0, (3.54)

admits the two solutions

h̃1 = 0 and h̃2 = −2a0

3
, (3.55)

and evaluating the second derivative at h̃1,2 gives

∂2P (h)

∂h2
(h̃1) = 2a0 and

∂2P (h)

∂h2
(h̃2) = −2a0. (3.56)

Therefore, in the case (3.52), h̃1 is a local maximum and h̃2 is a local minimum of P (h).

Now, first analyze the cases where the extrema h̃1,2 are roots of P (h) by computing
P (h̃1,2) = 0.

• Case I: P (h̃1) = 0 gives a2 = 0 and therefore q = 0, i.e. a flow at rest. Here the roots
are computed directly to be

h1,2 = 0, and h3 = −a0. (3.57)
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P (h)

h0 h̃2

−a0

Fig. 3.4: Shape of the polynomial P (h) when there is a double root at zero.

P (h)

h0 h̃2

−a0

Fig. 3.5: Shape of the polynomial P (h) when there is a double root at h̃2.

Therefore there is a double root at zero which is also a maximum. From (3.52), the
third root is on the positive half axis and the polynomial takes the shape as depicted
in figure 3.4. Since the case of wet/dry zones is omitted in this work, the physical
relevant root is h3.

• Case II: P (h̃2) = 0 gives a2 = − 4
27a

3
0. Here there is a double root at the minimum h̃2

and a simple polynomial division gives that, in the case of (3.52), there is one root on
the negative half axis as shown in figure (3.5).

h1 =
1

3
a0, and h2,3 = −2a0

3
. (3.58)

The physical relevant roots are therefore h2,3. In fact, these roots correspond to the
critical regime since, by the definition of a0, it holds in this case that u2 = gh.
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P (h)

h0 h̃2

−a0

Fig. 3.6: Shape of the polynomial P (h), when there are two physical relevant roots.

Since in the physical relevant case (3.52) P (0) ≥ 0 and there is no extremum on the
negative half axis, apart from case I, there is always an unphysical negative real root. In
order to have physical relevant roots, a necessary and sufficient condition is to demand
P (h̃2) ≤ 0, see figure 3.6. In turn, this gives an additional restriction to the parameters a0

and a2 as

a2 ∈ [0,− 4

27
a3

0]. (3.59)

In this case, there are two positive real roots h1,2, for which there is

h1 ∈ (0, h̃2) and h2 > h̃2. (3.60)

Using again (3.55) it can be computed that for these two roots there is

gh1 < u2 and gh2 > u2. (3.61)

Therefore, h1 corresponds to the supercritical regime and h2 to the subcritical regime.
Moreover, see that, if there is a root in the respective flow regime, it is unique. This is critical
for the development of the model (3.20) and the projection to the dependent variables in
(3.2).

If a2 > − 4
27a

3
0, there is P (h̃2) > 0 and therefore there are no positive real roots, see figure

(3.7). Therefore, in order for the parameters a0 and a2 to give physical relevant solutions,
the following relations have to be satisfied

a0 < 0 and a2 ∈ [0,− 4

27
a3

0] (3.62)

3.3.2 Computation of the roots

Now the computation of the roots of the polynomial P (h) in the physical relevant scenario
(3.62) is discussed. By the substitution h = t− a0

3 one has the following depressed form:
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P (h)

h0 h̃2

−a0

Fig. 3.7: Shape of the polynomial P (h), when there are no physical relevant roots.

Q(t) = t3 − a2
0

3
t+

27a2 + 2a3
0

27
. (3.63)

Due to the substitution it is obvious that, if the roots of Q(t) are real, so are the roots of
P (h) and vice versa. If the roots of Q(t) are all real, then these roots can be computed as

t1 = −2

3
a0 cos(

φ

3
) t2 = −2

3
a0 cos(

φ+ 2π

3
) t3 = −2

3
a0 cos(

φ+ 4π

3
), (3.64)

where there is

φ = arctan(−
3
√

3
√
−a2

(
4a3

0 + 27a2

)
2a3

0 + 27a2
), (3.65)

see also [83]. This can now be rewritten as roots of P (h) as

h1 = −1

3
a0

(
2 cos(

φ

3
) + 1

)
, h2 = −1

3
a0

(
2 cos(

φ+ 2π

3
) + 1

)
,

h3 = −1

3
a0

(
2 cos(

φ+ 4π

3
) + 1

)
.

(3.66)

Since in the physical relevant case all roots are real, these formulas can be applied to
compute the roots of P (h). It remains to check, which of the roots in (3.66) correspond to
the unphysical, sub- and supercritical root as discussed in section 3.3.1.

Consider the following cases:

• Case I: a2 = 0. This gives φ = 0 and the roots to P (h) from (3.66) read

h1 = −a0 h2 = 0 h3 = 0 (3.67)

, see also figure 3.8.
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• Case II: a2 = − 4
27a

3
0. This gives φ = π and the roots to P (h) from (3.66) read

h1 = −2

3
a0 h2 =

1

3
a0 h3 = −2

3
a0, (3.68)

see also figure 3.9.

Furthermore, compute the derivative of the roots with respect to a2 as

∂hi
∂a2

=
∂

∂a2

(
−1

3
a0

(
2 cos(

φ(a2) + 2(i− 1)π

3
) + 1

))
=

4

9
a0

(
sin(

φ(a2) + 2(i− 1)π

3
)
∂φ(a2)

∂a2

)
.

(3.69)

In the physical relevant case (3.62) it holds that

∂φ(a2)

∂a2
=

∂

∂a2
arctan(−

3
√

3
√
−a2

(
4a3

0 + 27a2

)
2a3

0 + 27a2
)

=
1

1 + x2

12
√

3a6
0

(2a3
0 + 27a2)2

√
−a2(4a3

0 + 27a2)
> 0,

(3.70)

where

x = −
3
√

3
√
−a2

(
4a3

0 + 27a2

)
2a3

0 + 27a2

Since by Case I and Case II, φ(0) = 0 and φ(− 2
27a

3
0) = π and with (3.70), there is in

the physical relevant case φ(a2) 7→ [0, π] monotonically. It remains to check the sign of

sin(φ+2(i−1)π
3 ) in (3.69) for φ ∈ (0, π). There is

P (h)

h0

h2h3

h̃2
−a0

h1

Fig. 3.8: Location of the roots (3.66) in the case a2 = 0
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P (h)

h0 h̃2

h1h3h2

−a0

Fig. 3.9: Location of the roots (3.66) in the case a2 = − 4
27a

3
0

P (h)

h0 h̃2
−a0

h1h3h2

Fig. 3.10: Derivatives of the roots with respect to a2 in the case a2 ∈ (0,− 4
27a

3
0)

• i = 1: sin(φ3 ) > 0 for φ ∈ (0, π),

• i = 2: sin(φ+2π
3 ) > 0 for φ ∈ (0, π),

• i = 3: sin(φ+4π
3 ) < 0 for φ ∈ (0, π),

which gives for the derivatives from (3.69)

∂h1

∂a2
< 0

∂h2

∂a2
< 0

∂h3

∂a2
> 0, (3.71)

see also figure (3.10). Therefore, from (3.61),(3.67),(3.68) and (3.71) it follows that the
roots from 3.66 can be associated to the respective flow regime as follows

h1 :subcritical , h2 :unphysical , h3 :supercritical.
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3.3.3 Synopsis

The results from the sections 3.3.1 and 3.3.2 are now repeated in a compact form. Define

the equilibrium variables q = hu and E = q2

2h2 + g (h+B). To solve for the waterheight one
has to solve P (h) = 0, where

P (h) = h3 +
gB − E

g
h2 +

q2

2g

= h3 + a0h
2 + a2.

P (h) only admits physical relevant roots, if

a0 < 0, a2 ∈ [0,− 4

27
a3

0]. (3.72)

They can be computed explicitly to be

hsub = −1

3
a0

(
2 cos(

φ

3
) + 1

)
hsuper = −1

3
a0

(
2 cos(

φ+ 4π

3
) + 1

)
, (3.73)

where there is

φ = arctan(−
3
√

3
√
−a2

(
4a3

0 + 27a2

)
2a3

0 + 27a2
). (3.74)

3.4 Numerical Tests

This section is concerned with the practical application of the derived scheme. To this end,
first three test cases are considered with respect to the three different flow regimes, i.e. a sub-
, trans-, and supercritical equilibrium. These tests have been developed by the author and
are not motivated by practical applications, but by the simplicity of the tests with respect to
implementation, but also with respect to the scalability to the different flow regimes. After
that, some testcases proposed in the literature are considered in order to investigate the
practical applicability of the scheme.

In all tests, an equidistant grid is concerned. Denote by D the length of the domain and
by Nx the number of cells, then there is ∆x = D

Nx
. Furthermore, the parameters δ1,2 from

(3.6) are set to 1.5, and Neumann boundary conditions are imposed.

Besides investigating the performance of the derived scheme, the purpose of this section
is also to show the benefits of a well-balanced scheme if near equilibrium solutions are
computed. In section 3.1.5, two different quadrature rules for the source term are derived,
i.e. the quadrature (3.37) gives a scheme that is consistent with the general equilibria (3.2)
and the quadrature (3.38) gives a scheme that is only consistent with the Lake at Rest
solutions (3.3). Both quadratures are applied in order to show the superiority of the general
quadrature (3.37) over the Lake at Rest quadrature (3.38). The schemes employed with the
respective quadratures are noted as HLLME and HLLLR. Moreover, it shall be shown, that
the second order in space extension discussed in section 3.2 for one gives a well-balanced
scheme and also gives better approximations as compared to the first order scheme at the
same resolution. Whenever the second order in space approach is used, the second order
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Fig. 3.11: Lake at Rest initial condition. Left: The bottom topography B and the total
waterheight h+B. Right: Velocity u

time-discretization from [14] discussed in section 2.3.2 is applied. The first and second order
schemes are denoted as HLLFO and HLLSO respectively.

3.4.1 Lake at Rest

In this section a Lake at Rest equilibrium is concerned. The domain size D is set to 1 as well
as the gravitational constant g is set to 1 and the bottom topography takes the following
shape

B(x) =



1 if x < x0,

cos( x−x0
x1−x0

π) if x0 < x < x1,

−1 if x1 < x < x2,

− cos( x−x2
x3−x2

π) if x2 < x < x3,

1 if x > x3,

(3.75)

where x0 = 0.1, x1 = 0.4, x2 = 0.6 and x3 = 0.9. The Lake at Rest equilibrium is set up
by defining the equilibrium variables as{

h(x)eq +B(x) = 2,

u(x)eq = 0,
(3.76)

see also figure 3.11.

At first the equilibrium defined by (3.75) and (3.76) is used as an initial condition and
the respective schemes are used to compute the evolution. The expected result is, that
the discrete time derivative vanishes for all the schemes and therefore the Lake at Rest
equilibrium is preserved up to machine precision. The L1 error is shown in table 3.1 which
shows, that all the schemes show the expected performance.

Next a disturbance on the waterheight is placed on the equilibrium such that

h(0, x)− h(x)eq =

{
sin( x−x1

x2−x1
π) if x1 < x < x2,

0 else,
(3.77)

75



3.4 Numerical Tests

HLLFOME HLLSOME HLLFOLR
N h hu h hu h hu

100 0.01E-16 4.01E-16 0.01E-16 3.17E-16 0.01E-16 4.01E-16
200 0.01E-16 5.40E-16 0.01E-16 6.06E-16 0.01E-16 5.40E-16
400 0.01E-16 9.00E-16 0.11E-16 9.40E-16 0.01E-16 9.00E-16
800 0.01E-16 7.20E-16 0.24E-16 6.77E-16 0.01E-16 7.20E-16
1600 0.01E-16 8.95E-16 0.24E-16 7.56E-16 0.04E-16 8.95E-16
3200 0.11E-16 9.68E-16 0.47E-16 9.27E-16 0.11E-16 9.68E-16

Table 3.1: L1 error for the undisturbed Lake at Rest solution given by (3.75) and (3.76).
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Fig. 3.12: Solutions to the disturbed Lake at Rest after time 0.1. Left: Comparison of the
first order schemes with the different quadratures. Right: Comparison of the higher order
extension with respect to the first order approximation and a reference solution.

and the evolution of the disturbance is computed on a mesh with size Nx = 100. The
results are depicted in figure 3.12. The first order schemes with the different quadrature rules
give almost identical results, since the quadrature for the general equilibria (3.2) is consistent
with the quadrature for the Lake at Rest solutions (3.38) when Lake at Rest solutions are
concerned. Moreover a comparison with the first order and second order version are shown
with respect to a reference solution computed on a mesh with Nx = 5400. The second order
extension gives a better resolution of the resulting waves even on the coarser mesh.

3.4.2 Scalable Moving Equilibrium

Now, a general equilibrium is concerned. Again the domain size D is set to 1 as well as the
gravitational constant g is set to 1. The equilibrium conditions are given by{

h(x)equ(x)eq = Cq,
u(x)2

eq

2 + g(h(x)eq +B(x)) = Ce,
(3.78)

where Cq and Ce are constants determining the equilibrium structure. First, rearrange
(3.78) in the following way
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{
u(x)eq = Cq

h(x)eq
,

B(x) = Ce
g − ( Cq2

2gh(x)2
eq

+ h(x)eq).
(3.79)

Therefore the strategy for this section is to compute the equilibrium solutions first by
stating h(x)eq, Cq and Ce and then compute u(x)eq and B(x) accordingly. In comparison to
[140], where the bottom topography and the constants Cq and Ce are given, this approach
has the advantage that the equilibrium solutions are known explicitly and therefore it is easy
to check if the equilibrium is physical relevant and if it is sub-, trans- or supercritical.

Here it is decided to parameterize the moving equilibrium as follows

h(x)eq =


3 if x < 0.25,

2 + 0.5 cos((x− 0.25)2π) if 0.25 < x < 0.75,

2 if x > 0.75,

Ce = 3.

(3.80)

The parameter Cq is used to scale the equilibrium to take all the three flow types. In fact,
with the first equation of (3.79), the condition on the left eigenvalue can be rewritten

u−
√
gh ≤ 0⇔

(
Cq2

g

)3

≤ h(x)eq,

u−
√
gh ≥ 0⇔

(
Cq2

g

)3

≥ h(x)eq.

(3.81)

As the distribution for the waterheight is given by (3.80), the following values for Cq
correspond to the respective flow regime

Cq =


1 for subcritical flow,

3 for transcritical flow,

5 for supercritical flow.

(3.82)

The resulting equilibria are shown in figure 3.13.

In the following, the schemes are tested for the equilibria in all the flow regimes with
respect to their well-balanced property as well as the ability to accurately capture small
deviations on the respective equilibria, where the deviations are chosen to take the following
form

h(0, x)− h(x)eq =

{
0.1× 10−7 sin( x−x0

x1−x0
π) if x0 < x < x1,

0 else,
(3.83)

with x0 = 0.45 and x1 = 0.55.

First, the subcritical equilibrium is concerned. The equilibrium is set as initial condition
for the respective schemes and then is numerical integrated. The L1 errors are shown in
table 3.2, where EOC is short for estimated rate of convergence. Both the first order and the
second order scheme using the quadrature rule (3.2) are consistent with the equilibrium and
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Fig. 3.13: Moving equilibria. From top to bottom are the sub- trans- and supercritical
equilibria. Left: The bottom topography B and the total waterheight h+B. Right: Velocity
u
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HLLFOME HLLSOME HLLFOLR
N h hu h hu h EOC hu EOC

100 0.01E-16 1.23E-16 0.01E-16 2.79E-16 6.69E-09 - 1.64E-08 -
200 0.01E-16 1.33E-16 0.01E-16 2.69E-16 8.28E-10 3.01 2.08E-09 2.98
400 0.01E-16 1.50E-16 0.78E-16 2.75E-16 1.03E-10 3.01 2.63E-10 2.98
800 0.01E-16 1.50E-16 0.01E-16 0.97E-16 1.29E-11 3.00 3.30E-11 3.00
1600 0.01E-16 1.47E-16 0.01E-16 2.37E-16 1.67E-12 2.95 4.06E-12 3.00
3200 0.01E-16 1.59E-16 0.01E-16 2.36E-16 2.70E-14 5.96 2.99E-13 3.76

Table 3.2: L1 error for the undisturbed subcritical moving equilibrium at time 0.18
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Fig. 3.14: Solutions to the disturbed subcritical moving equilibrium at time 0.18. Left:
Comparison of the first order schemes computed with 100 cells. Right: Comparison of the
first and second order scheme with respect to a reference solution computed with 5400 cells.

preserve it up to machine precision. The scheme equipped with the quadrature (3.38) is not
consistent with that type of equilibrium and therefore introduces numerical errors. However,
increasing the resolution decreases the error both in the waterheight and the discharge with
third order.

Next, the evolution of a disturbance on the subcritical equilibrium is computed. The
results are depicted in figure 3.14. The scheme with the quadrature (3.38) is not able to
accurately capture the resulting waves. The numerical solution is dominated by the error
coming from the inconsistency with the moving equilibrium. However, it is expected from
table 3.2 that, if a higher resolution is chosen, the numerical error will decrease and the
resolution of the waves will be better, see also section 3.4.3. Additionally, it is shown that
the second order extension decreases the numerical viscosity and gives a better resolution of
the dynamics compared to the first order scheme.

The second numerical experiments are devoted to the transcritical equilibrium. As for
the subcritical equilibrium, first the undisturbed equilibrium is used as an initial condition
and is integrated numerically. The L1 errors are given in table 3.3. Again, the quadrature
consistent only with the Lake at Rest solution is not able to capture the equilibrium exactly
and therefore numerical errors are introduced, which again decrease with third order. Also
as expected the first and second order scheme using the quadrature for the general equilibria
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HLLFOME HLLSOME HLLFOLR
N h hu h hu h EOC hu EOC

100 0.01E-16 0.01E-16 0.01E-16 0.01E-16 4.71E-08 - 1.15E-07 -
200 0.01E-16 0.01E-16 0.01E-16 0.01E-16 5.74E-09 3.03 1.40E-08 3.04
400 0.01E-16 0.01E-16 0.01E-16 0.01E-16 7.08E-10 3.02 1.72E-09 3.02
800 0.01E-16 0.01E-16 0.01E-16 0.01E-16 8.79E-11 3.01 2.13E-10 3.01
1600 0.01E-16 0.01E-16 0.01E-16 0.01E-16 1.09E-11 3.01 4.06E-11 2.40
3200 0.01E-16 0.01E-16 0.01E-16 0.01E-16 1.20E-12 3.18 3.43E-12 3.57

Table 3.3: L1 error for the undisturbed transcritical moving equilibrium at time 0.12.
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Fig. 3.15: Solutions to the disturbed transcritical moving equilibrium at time 0.12. Left:
Comparison of the first order schemes computed with 100 cells. Right: Comparison of the
first and second order scheme with respect to a reference solution computed with 5400 cells.

show the desired well-balanced property.

Again, in order to show the applicability of the well-balanced scheme, a small deviation is
placed now on the transcritical equilibrium and then integrated numerically, see figure 3.15.
Also in this case the general quadrature (3.2) shows a far better behavior to capture the
resulting dynamics. Observe now, since the flow changes type from sub- to supercritical as
going from left to right where the transcritical point is just where the initial disturbance is
placed, one wave moves downstream as the other wave does not move due to the critical flow
velocity. Also in this case the second order extension shows the desired properties in giving
a sharper resolution of the waves. The oscillation in the first order scheme can be explained
by the unphysical diffusion from the inconsistency of the scheme with the underlying PDE.

Finally, the case of a supercritical equilibrium is concerned. In this case it is not necessary
to distinguish between the different quadrature rules, since the model derived in section 3.1.3
does not depend on a quadrature to define the numerical fluxes. In table 3.4 are again given
the L1 errors with respect to the equilibrium.

In this regime the HLL approximate Riemann solver is considered to give the most accurate
solutions, since the equilibrium conditions are exactly solved across the interface. However,
due to the supercritical structure, all the eigenvalues are positive and the finite volume
approach itself introduces diffusion. The evolution of a small disturbance is shown in figure
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HLLFOME HLLSOME

N h hu h hu

100 0.01E-16 0.01E-16 0.01E-16 0.01E-16
200 0.01E-16 0.01E-16 0.01E-16 0.01E-16
400 0.01E-16 0.01E-16 0.01E-16 0.01E-16
800 0.01E-16 0.01E-16 0.01E-16 0.22E-16
1600 0.01E-16 0.01E-16 0.01E-16 0.14E-16
3200 0.01E-16 0.01E-16 0.01E-16 0.07E-16

Table 3.4: L1 error for the undisturbed supercritical moving equilibrium at time 0.08
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Fig. 3.16: Solutions to the disturbed supercritical moving equilibrium at time 0.08. Com-
parison of the first and second order scheme computed with 100 cells with respect to a
reference solution computed with 5400 cells.

3.16. Due to the supercritical regime, now both waves move to the right, while the left waves
only moves very slowly. The second order scheme also gives in this case a better resolution,
especially on the left wave. On the other hand, the computation of the right wave seems
to suffer strongly from numerical diffusion. Even though the second order scheme gives a
better resolution, it is still quite far away from the reference solution.

3.4.3 The Noelle-Shu-Xing Testcases

The next testcase are suggested by [140] to show the superiority of general well-balanced
schemes with respect to schemes that are only well-balanced with respect to the Lake at
Rest. For all the testcases the size of the domain is set to D = 25 and the gravitational
constant is g = 9.812. In specific two testcases are considered, namely a subcritical and a
transcritical one. The subcritical equilibrium is determined by

Cq = 4.42,

Ce = 22.06605,

B(x) =

{
0.2− 0.05(x− 10)2 if 8 < x < 12,

0 otherwise.

(3.84)
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Fig. 3.17: Subcritical equilibrium as suggested in [140]. Left: Bottom topography and total
waterheight. Right: velocity.
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Fig. 3.18: Solutions to the disturbed subcritical moving equilibrium at time 1.5. Left:
Comparison of the first order schemes computed with 100 cells. Right: Comparison of the
first and second order scheme with respect to a reference solution computed with 5400 cells.

The waterheight can be computed by solving the third order polynomial as explained in
section 3.3. The resulting distributions are shown in figure 3.17.

A disturbance is placed left of the bump in the bottom topography as

h(0, x)− h(x)eq =

{
0.05 if 5.75 < x < 6.25,

0 else,
(3.85)

and the resulting waves are computed with the derived schemes, see figure 3.18. In this
case, the HLLLR and HLLME give almost identical results. Therefore, in this case there is
not an advantage to consider the general quadrature (3.2). When comparing the different
orders, it can bee seen that the resulting waves are captured by both schemes.

In addition to the test proposed by [140], a slight modification is now suggested here.
Since the first order schemes are almost identical in the proposed test, it is suggested to
consider smaller perturbations, i.e.
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Fig. 3.19: Solutions to the subcritical moving equilibrium with smaller perturbation at
time 1.5. Left: Comparison of the first order schemes computed with 100 cells. Right:
Comparison of the first order schemes computed with 1000 cells.

h(0, x)− h(x)eq =

{
0.05× 10−5 if 5.75 < x < 6.25,

0 else.
(3.86)

The results are shown in figure 3.19. When computing these small perturbations on a
mesh with 100 cells, the inconsistency of the quadrature (3.38) is starting to influence the
numerical results strongly. However, when increasing the resolution the numerical error of
the HLLLR scheme falls below the considered dynamics and both schemes again give almost
identical results.

The transcritical equilibrium is determined by

Ce = 11.7744,

Cq = 1.70507,

B(x) =

{
0.2− 0.05(x− 10)2 if 8 < x < 12,

0 otherwise.

(3.87)

The resulting distributions are shown in figure 3.20. The flow is considered to be supercritical
left of the bump in the bottom topography , critical at x = 10, i.e. the maximum of the
bottom topography, and then changes type to subcritical.

Again the perturbation (3.85) is placed on top of the equilibrium and the resulting waves
are computed with the derived schemes, see figure 3.21. Here the same results are found as
in the subcritical case. For the first order schemes, there is almost no difference between the
two variants.

Therefore a smaller perturbation is considered as

h(0, x)− h(x)eq =

{
0.05× 10−7 if 5.75 < x < 6.25,

0 else,
(3.88)

and again the perturbations are computed as depicted in figure 3.22. The result is similar
to the subcritical case. However, it should be remarked that the small perturbations start
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Fig. 3.20: Transcritical equilibrium as suggested in [140]. Left: Bottom topography and
total waterheight. Right: velocity.
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Fig. 3.21: Solutions to the disturbed transcritical moving equilibrium at time 1.5. Left:
Comparison of the first order schemes computed with 100 cells. Right: Comparison of the
first and second order scheme with respect to a reference solution computed with 5400 cells.
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Fig. 3.22: Solutions to the transcritical moving equilibrium with smaller perturbation at
time 1.5. Left: Comparison of the first order schemes computed with 100 cells. Right:
Comparison of the first order schemes computed with 1000 cells.

forming a quite steep shock at the critical point. If this behavior is physical is questionable.
The here derived scheme surely misses robustness and stability properties. It may be inter-
esting how such properties may constrain the numerical scheme and therefore influence the
numerical approximations.
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4 A Well-Balanced Suliciu Relaxation Scheme
for the Euler Equations with Gravity

This section deals with the derivation of a numerical scheme to approximate the solutions of
the Euler equations with gravity. The system has been introduced in section 1.4 and reads

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + Ip) = −ρ∇Φ,

Et +∇ · (u(E + p)) = −ρ〈u,∇Φ〉,
Φt = 0,

(4.1)

where ρ(x, t) > 0 denotes the density, u(x, t) ∈ R the velocity, E(x, t) > 0 the total energy
given by

E = ρe+
1

2
ρu2,

where e > 0 is the internal energy, and the function Φ : R3 → R is a given smooth gravita-
tional potential. Following section 1.3.1, the pressure is assumed to satisfy some thermody-
namical properties and the system admits a family of convex entropies as

(ρF(η))t +∇ · ρF(η)u ≤ 0, (4.2)

for η the specific entropy and any convex function F . Moreover, it admits a set of physical
relevant states as

ΩPhys = {(ρ, ρu, E) ∈ R5; ρ > 0, e > 0}. (4.3)

Of specific interest are approximations of near hydrostatic equilibrium solutions to (4.1).
The hydrostatic equilibria have been derived in (1.61) and are here recast as{

u = 0,

∇p = −ρ∇Φ.
(4.4)

As mentioned in section 1.4, system (4.4) is underdetermined, since the pressure depends
on the density as well as on the temperature. Therefore, to the best knowledge of the author,
additional assumptions have to be made to solve (4.4).

Of specific interest in this chapter are the following classes of solutions to (4.4)

• Isothermal Atmosphere for an ideal Gas Law: p = ρRT
T (x) = const,

ρ(x) = exp(−Φ(x)
RT ),

p(x) = RT exp(−Φ(x)
RT ).

(4.5)
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• Polytropic Atmosphere p = KρΓ for Γ ∈ (0, 1) ∪ (1,∞)ρ(x) =
(

Γ−1
ΓK (C − Φ(x))

) 1
Γ−1 ,

p(x) = K
1

1−Γ
(

Γ−1
Γ (C − Φ(x))

) Γ
Γ−1 ,

(4.6)

which have been derived and discussed in section 1.4.

The focus in this chapter is to derive a well-balanced numerical scheme for the hydrostatic
equilibria given in (4.5) and (4.6). Moreover, the numerical scheme is designed to give
physical relevant and entropy stable approximations of the weak solutions of (4.1).

Numerous techniques were proposed in the literature to derive well-balanced schemes.
Most of them concerned the shallow-water equations, see chapter 3. However, in the case
of the Euler equations with gravity, the derivation of well-balanced schemes is more delicate
since the steady states are in general only given by the underdetermined PDE system (4.4).

A unique approach is given by Cargo and LeRoux [29]. They show that the system (4.1)
in the case of one space dimension and a linear gravitational potential can be rewritten into
a homogeneous system. Classical methods for conservation laws can now be applied and the
well-balanced property comes directly from the consistency of the numerical flux function.
However, it seems very hard to extend that approach to more than one space dimension
and a nonlinear gravitational potential. Although Cargo-LeRoux’s technique was recently
revisited in [37], where a suitable relaxation technique was used. Another technique is based
on a local hydrostatic reconstruction and is applied [89], where the focus is on preserving
the isentropic steady states. Another hydrostatic reconstruction technique is used in [34] to
derive a well-balanced scheme for the isothermal and polytropic states.

This chapter are very close to the publication [55], which, following the companion paper
[56] devoted to the Ripa model, is a result of the author’s collaboration. The strategy is
to develop a Suliciu-type relaxation scheme, see section 2.2.4, that is consistent with the
hydrostatic equilibria (4.5) and (4.6).

The chapter is organized as follows: section 4.1 is devoted to the derivation of the relax-
ation model, which is an extension of the work in [56]; section 4.2 concerns the robustness
and the well-balanced properties; section 4.3 is devoted to prove that the derived approxi-
mate Riemann solver is consistent with the entropy inequalities (4.2) in the sense of Harten,
Lax and van Leer [78]; in section 4.4, the Godunov-type scheme associated with the derived
approximate solver is presented and in Section 4.5 numerical experiments are performed to
investigate the performance of the scheme in practical applications.

4.1 Derivation of the Suliciu Relaxation Model

In order to design a well-balanced approximate Riemann solver, the Suliciu relaxation tech-
nique from section 2.2.4 is adopted. The derivation goes along the lines of [56], where a
relaxation model was developed in the framework of the the Ripa model. However, regard-
ing the robustness, stability and well-balancedness of the scheme, the Ripa model and the
Euler equations with gravity give different challenges.

According to the Suliciu relaxation approach, the pressure p is approximated by a new
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variable π governed by the following evolution law:

πt + uπx +
c2

ρ
ux =

1

ε
(p(τ, e)− π) . (4.7)

The relaxation parameter c > 0 will be fixed later in order to satisfy some robustness and
stability conditions.

Consider now the system (4.1) in one space dimension, where the pressure is approximated
by the relation (4.7) 

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + π)x = −ρΦx,

Et + (u(E + π))x = −ρuΦx,

(ρπ)t + (uπ)x + c2ux = ρ
ε (p(τ, e)− π) ,

Φt = 0.

(4.8)

According to the strategy developed in section 2.2.4, for the definition of the numerical
fluxes it is sufficient to compute the Riemann problem at the cell interfaces according to the
system (4.8) in the limit of ε→∞, given as

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + π)x = −ρΦx,

Et + (u(E + π))x = −ρuΦx,

(ρπ)t + (uπ)x + c2ux = 0,

Φt = 0.

(4.9)

Lemma 4.1.1. For c > 0, the system (4.9) is hyperbolic with linear degenerate eigenvalues
λi ∈ {0, u, u± c

ρ}, where λ = u has multiplicity 2. The respective Riemann invariants are

Ψ0 ∈ {ρu, π +
c2

ρ
, e− π2

c2
, φ+

u2

2
− c2

2ρ2
},

Ψu ∈ {u, π,Φ},

Ψu± c
ρ
∈ {u± c

ρ
, π ∓ cu, e− π2

c2
,Φ}.

(4.10)

The proof involves lengthy but straightforward computations and is omitted for brevity,
see for example [23] for details. Following lemma 4.1.1, system (4.9) admits a piecewise
constant solution to the Riemann problem as suggested in the model (2.30), see also figure
4.1.

However, there are two practical issues associated with the resolution of the Riemann prob-
lem. First, the Riemann invariants due to the 0 wave introduce non-linearities and second,
the ordering of the waves is not known in advance. These problems can make the process of
finding a solution quite cumbersome. However, in [164] a detailed analysis of the solution to
(4.9) is presented.
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Fig. 4.1: Solution to a Riemann problem for the relaxation system (4.9). A wave with
velocity 0 is added due to the source term.

The approach presented here seeks to avoid the technicalities needed to find a solution to
(4.9). To this end, in order to fix the issue of the ordering of the eigenvalues, it is suggested
to apply an additional relaxation approximation for the gravitational potential Φ by a new
variable Z as

Zt + uZx =
1

ε
(Φ− Z) . (4.11)

This now leads to the following relaxation model

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + π)x = −ρZx,
Et + (u(E + π))x = −ρuZx,
(ρπ)t + (uπ)x + c2ux = 0,

Zt + uZx = 0,

(4.12)

where the relaxation source terms have already been omitted due to section 2.2.4. However,
it should be remarked that the full equations (4.7) and (4.11) together with the system (4.12)
guarantee for the consistency property from definition 1.2.2.

Lemma 4.1.2. For c > 0, the system (4.12) is hyperbolic with linear degenerate eigenvalues
λi ∈ {u, u± c

ρ}, where λ = u has multiplicity 3. The respective Riemann invariants are

Ψu ∈ {u},

Ψu± c
ρ
∈ {u± c

ρ
, π ∓ cu, e− π2

c2
,Φ}.

(4.13)

The proof again is skipped for brevity. According to lemma 4.1.2, the system (4.12) admits
a piecewise constant solution as
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Fig. 4.2: Solution to a Riemann problem for the relaxation system (4.12). The source term
is now advected with the fluid velocity u.

WR

(x
t

;WL,WR

)
=


WL if x/t < λu− c

ρ
,

W ∗L if λu− c
ρ
< x/t < λu,

W ∗R if λu < x/t < λu+ c
ρ
,

WR if λu+ c
ρ
< x/t.

(4.14)

, see also figure 4.2.

In contrast to the solution to the system (4.9), as long as c > 0, the ordering of the waves
is known a priori and the Riemann invariants in (4.14) admit no non-linearities. However,
there are ten intermediate states W ∗L,W

∗
R, but the system (4.12) only admits nine invariants

in (4.13). Therefore, the approximate Riemann solver (4.14) is not uniquely defined. It
is suggested to make use of this additional degree of freedom and an additional Riemann
invariant is imposed on the wave with speed λu. The aim is to derive a well-balanced scheme
for the system (4.1). Therefore it is beneficial to impose a discretization of the hydrostatic
equilibrium relations (4.4) onto the approximate Riemann solver. On the continuum, the
relaxed hydrostatic equilibrium relations are

πx = −ρZx. (4.15)

As a discretization of (4.15) it is suggested to use

π?R − π?L = −ρ(WL,WR)(Z?R − Z?L), (4.16)

to impose as a Riemann invariant across the wave λu. The function ρ : R+ × R+ → R+

denotes a ρ-average function that satisfies the following consistency and symmetry properties:

ρL = ρR = ρ ⇒ ρ(WL,WR) = ρ,

ρ(WR,WL) = ρ(WL,WR).
(4.17)

Equipped with the Riemann invariants (4.13) and the additional closure relation (4.16),
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the intermediate states can be found explicitly.

Lemma 4.1.3. The Riemann problem associated with the system (4.12) completed by the re-
lation (4.16) admits a unique solution that satisfies the structure (4.14) and the intermediate
states W ∗L and W ∗R are defined by

Z∗L = ZL, Z∗R = ZR,

u∗ = u∗L = u∗R =
1

2
(uL + uR)− πR − πL + ρ(WL,WR)(ZR − ZL)

2c
,

π∗L = πL + c
uL − uR

2
+
πR − πL + ρ(WL,WR)(ZR − ZL)

2
,

π∗R = πR + c
uL − uR

2
− πR − πL + ρ(WL,WR)(ZR − ZL)

2
,

1

ρ∗L
=

1

ρL
+

1

c
(u∗ − uL),

1

ρ∗R
=

1

ρR
+

1

c
(uR − u∗),

e∗L = eL +
1

2c2

(
π∗L

2 − πL2
)
, e∗R = eR +

1

2c2

(
π∗R

2 − πR2
)
.

(4.18)

Once again, the proof is skipped for brevity.

To artificially impose the closure (4.16) might seem arbitrary. However, in [56] a different
relaxation model has been proposed to make this process rigorous. In fact, imposing an
additional relaxation process on the source term leads to the following system

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = −ρ(ρ−, ρ+)Zx,

Et + (u(E + p))x = −ρ(ρ−, ρ+)uZx,

(ρπ)t + (uπ)x + c2ux = 0,

Zt + uZx = 0,

ρ−t + (u− c
ρ − δ)ρ

−
x = 0,

ρ+
t + (u+ c

ρ + δ)ρ+
x = 0,

(4.19)

for some δ > 0. It is shown, that system (4.19) admits essentially the same solution as
system (4.12) with the additional closure (4.16). For more details on that see [56].

4.2 Robustness and Well-Balanced Properties

This section is concerned with the robustness and the well-balanced properties of the approx-
imate Riemann solver defined by (4.12). First, it is shown that the approximate Riemann
solver is consistent with the physical relevant set (4.3)

Lemma 4.2.1 (Robustness). Let be given WL,WR ∈ ΩPhys, defined by (4.3), for the relax-
ation parameter c large enough, there is W ∗L,W

∗
R ∈ ΩPhys .

Proof. The proof follows exactly the lines of the proof of lemma 2.2.2. The positivity of
the densities ρ∗R, ρ

∗
L is equivalent, since the source term does not appear in the respective
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Riemann invariants. The formulas for the internal energies rewrite as

eCR = eR −
πRs̄+ s̄2

4

2c2
+

(uL − uR)(πR − s̄)
2c

+
(uL − uR)2

8
,

eCL = eL +
πLs̄+ s̄2

4

2c2
+

(uL − uR)(πL + s̄)

2c
+

(uL − uR)2

8
,

where s̄ = πR − πL + ρ(WL,WR)(ZR − ZL). Since the terms that are independent of c are
all positive, choosing c large enough ensures the positivity.

Now the well-balanced property of the approximate Riemann solver is discussed.

Lemma 4.2.2 (Well-Balancedness). Let wL and wR be given in ΩPhys such that{
uL = uR = 0,

pR − pL + ρ(WL,WR)(ΦR − ΦL) = 0.
(4.20)

Then the approximate Riemann solver is at rest, i.e. satisfies relation (2.82) and is therefore
well-balanced.

Proof. When looking at the intermediate states (4.18) the proof is straightforward. First,
the relations (4.20) give

u∗ = 0 and π∗L,R = πL,R.

With these it is then also straightforward to see that ρ∗L,R = ρL,R and e∗L,R = eL,R.

The description of a discrete steady state in (4.20) is quite general. If a steady state
defined on a continuum satisfies the relation (4.20) strongly depends on the choice of the
projection onto the discrete data and the choice of the function ρ. Lemma 4.2.3 specifies how
to choose the function ρ such that it gives a well-balanced scheme for the isothermal and
polytropic equilibria when the data is projected pointwise onto the cell centers as mentioned
in chapter 3. However, the class of hydrostatic equilibria is rich and the general formulation
of lemma 4.2.2 admit, that in practical applications other functions for ρ may be found to
satisfy the respective hydrostatic relation. Additionally, the here presented suggestions for ρ
are at least second order approximations to any hydrostatic equilibrium and therefore, if the
application allows for some errors due to the source term discretization, the averages from
lemma 4.2.3 may also be applied.

Lemma 4.2.3. 1. Let WL,WR ∈ ΩPhys and satisfying the isothermal equilibrium rela-
tions (4.5), i.e. 

uL = uR = 0,

ρL,R = exp
(
C−ΦL,R

K

)
,

pL,R = K exp
(
C−ΦL,R

K

)
,

(4.21)

with K > 0 and C ∈ R. Assume that ρ is defined by

ρ(WL,WR) =


ρR − ρL

ln(ρR)− ln(ρL)
if ρL 6= ρR,

ρL if ρL = ρR,
(4.22)
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4.3 Consistency with the entropy inequalities

then the approximate Riemann solver satisfies relation (2.82) and is therefore well-
balanced for the isothermal equilibria (4.5).

2. Let WL,WR ∈ ΩPhys and satisfying the polytropic equilibrium relations (4.6), i.e.
uL = uR = 0,

ρL,R =
(

Γ−1
ΓK (C − ΦL,R)

) 1
Γ−1 ,

pL,R = K
1

1−Γ
(

Γ−1
Γ (C − ΦL,R)

) Γ
Γ−1 ,

(4.23)

with Γ ∈ (0, 1) ∪ (1,+∞), K > 0 and C ∈ R. Assume that ρ is defined by

ρ(WL,WR) =


Γ− 1

Γ

ρΓ
R − ρΓ

L

ρΓ−1
R − ρΓ−1

L

if ρL 6= ρR,

ρL if ρL = ρR,

(4.24)

then the approximate Riemann solver satisfies relation (2.82) and is therefore well-
balanced for the polytropic equilibria (4.6).

Proof. From the formulas for the intermediate states (4.18), it is sufficient to proof that

pR − pL = −ρ(WL,WR)(ΦR − ΦL) (4.25)

in the respective cases.
In the isothermal case from (4.23) there is

ΦR − ΦL = K(ln(ρR)− ln(ρL)),

pR − pL = K(ρR − ρL).

Together with the isothermal definition (4.22) of ρ(WL,WR) gives (4.25) .
In the polytropic case from (4.24) there is

ΦR − ΦL = K
Γ

Γ− 1

(
ρΓ−1
R − ρΓ−1

L

)
,

pR − pL = K
(
ρΓ
R − ρΓ

L

)
.

Together with the polytropic definition (4.24) of ρ(WL,WR) gives (4.25)

In [97] and [12] additional strategies have been proposed to define the quadrature. In
specific, by allowing the quadrature also depend on the spatial variable x and giving and pa-
rameterizing a specific hydrostatic equilibrium, the well-balanced property can be extended
to a wider class of hydrostatic equilibria.

4.3 Consistency with the entropy inequalities

This section concerns the entropy stability of the approximate Riemann solver defined by
(4.12). The Euler equations with gravity admit an entropy that is non-increasing over time,
see lemma 1.3.1. Since the numerical solutions computed by a finite volume scheme at best
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only serve as approximations to the underlying PDE, it is desirable to transfer as many prop-
erties of PDE as possible to the numerical scheme to compute relevant approximations. The
stability with respect to entropy is a non-linear stability property and therefore important
since it respects the full non-linear dynamics that are build into the model.

However, this section is technical and therefore a short outline of the general strategy to
proof the entropy stability shall be given in advance; also see [15],[21] for similar arguments.
First, denote the dependent variables of the Euler system (4.1) as U = (ρ, ρu,E,Φ) and
the dependent variables of the relaxation system (4.12) as W = (ρ, ρu,E, π, Z,Φ). The
relaxation system admits an equilibrium manifold M∈ R4, such that on M there is
π = p(τ, e) and Z = φ, which is further denoted as Weq = {W |W ∈M}.

Now a quantity s̄ = s̄(W ) is constructed such, under the dynamics of the relaxation system
(4.12), it satisfies the following transport relation

s̄t + us̄x = 0. (4.26)

Moreover, s̄ is a conserved quantity. In the model (4.14) this leads in the case of the
Riemann problem to the following distribution of s̄.

s̄
(x
t

;WL,WR

)
=


s̄(WL) if x/t < λu− c

ρ
,

s̄(WL) if λu− c
ρ
< x/t < λu,

s̄(WR) if λu < x/t < λu+ c
ρ
,

s̄(WR) if λu+ c
ρ
< x/t.

(4.27)

Then, the quantity s̄ is connected to the specific entropy s = s(U) of the Euler system
(4.1) such that

s̄(W ) ≥ s(U) and s̄(Weq) = s(U(Weq)), (4.28)

i.e. the function s̄ reaches its minimum on the equilibrium manifold M and coincides
there with the specific entropy of the Euler system. This reflects the two step behavior of
the numerical method when dealing with relaxation schemes. First, the data is evolved due
to the homogeneous part of the relaxation system. According to (4.26), this is conservative
for the entropy s̄. Second, the data is projected to its equilibrium manifold M. During the
projection, the quantity s̄ is nonincreasing and coincides on the manifold with the entropy s
of the original system. Therefore, the evolution of s is bounded by the evolution of s̄, which
is non-increasing, and therefore s is non-increasing, see also figure 4.3. This gives that the
approximate Riemann solver given by (4.12) is consistent with the entropy inequalities (4.2)
in the sense of Harten, Lax and van Leer [78].

Now, the reasoning given above is made precise. In order for the quantity s̄ to satisfy the
transport property (4.26), it is beneficial to make it dependent on functions I(W ) and J(W )
that satisfy the same transport property. In fact, let I(W ) and J(W ) be defined as follows

I(W ) := I(π, τ) = π + c2τ, (4.29)

J(W ) := J(π, e) = e− π2

2c2
, (4.30)

then I(W ), J(W ) are strong Riemann invariants of the system (4.12) in the following
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0

s̄

x

λu− c
ρ λu

λu+ c
ρ

s̄(WL) = s(UL) s̄(W ∗L) = s̄(WL)

s̄(W ∗L,eq) = s(U∗L)

s̄(WR) = s(UR)s̄(W ∗R) = s̄(WR)

s̄(W ∗R,eq) = s(U∗R)

Fig. 4.3: Distribution of s̄ at tn+1. The initial condition is on the equilibrium manifoldM,
therefore s̄ and s coincide on the left and right states. The values of s̄(W ∗L,R) follow from
the transport property. Finally, during the projection step denoted by the dashed lines, s̄ is
non-increasing.

sense:

Lemma 4.3.1. The weak solutions of the relaxation model (4.12) satisfy

∂tρΨ(I, J) + ∂xρΨ(I, J)u = 0, (4.31)

for all smooth function Ψ : R2 → R.

Proof. First consider a smooth solution W of the system (4.12). A straightforward com-

putation gives for the internal energy e = E
ρ −

u2

2 , the specific volume τ = 1
ρ and for the

quantity π2

2c2
, that there is

et + πτux + uex = 0,

τt + uτx − τux = 0,

(
π2

2c2
)t + πτux + u(

π2

2c2
)x = 0.

From these, it easily holds that

It + uIx = 0,

Jt + uJx = 0.

Therefore for all smooth functions Ψ̄ : R2 → R, the following transport equation is satisfied:

Ψ̄t(I, J) + uΨ̄x(I, J) = 0,

which gives (4.31) for smooth solutions. To conclude, see that the system (4.12) only has
linearly degenerate fields. Therefore the same result also holds true for weak solutions of
(4.31).

On the other hand, in order to ensure the consistency property of s̄ with respect to s in
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(4.28), one would like s̄ and s to be of similar form. Since s takes as arguments the specific
volume τ and the internal energy e, let s̄ be defined as

s̄ = s(τ̄ , ē). (4.32)

Given the above reasoning, one would like to compute τ̄ = τ̄(I, J), ē = ē(I, J). In fact,
given the values I, J and evaluating their definitions (4.29) and (4.30) on the equilibrium
manifold gives the two following non-linear equations

I = p(τ, e) + c2τ,

J = e− p(τ, e)2

2c2
.

(4.33)

These two equations may be solved for τ̄ and ē. The following definitions and derivations
discuss if the values τ̄ and ē as solutions to (4.33) are well-defined. Indeed the system (4.33)
can be rearranged in the following way

p(τ̄ , ē) = I − c2τ̄ ,

ē = J +
p(τ̄ , ē)2

2c2
.

(4.34)

Using the first in the second equation gives then

ē = J +
(I − c2τ̄)2

2c2
, (4.35)

and again using this in the first equation of (4.34) gives then

p(τ̄ , J +
(I − c2τ̄)2

2c2
) = I − c2τ̄ . (4.36)

Therefore, consider the function fI,J : R+ → R defined as follows:

fI,J(τ) = τp

(
τ, J +

(I − c2τ)2

2c2

)
+ c2τ2 − Iτ. (4.37)

Following the above calculations, τ̄ may be defined as a root of the function fI,J(τ) and ē
is then given by (4.35). If a root of fI,J(τ) exists is not obvious and depends on the pressure
law. Before stating an assumption on the pressure law to ensure the existence of the root,
the following set is introduced to specify for which values of (I, J) a solution is searched for
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the system (4.33)

A =

{
(I, J) ∈ R2; ∃τ > 0, ∃e > 0 such that:

I = p (τ, e) + c2τ, , (4.38)

J = e− p (τ, e)2

2c2
, , (4.39)

c2 > p (τ, e) ∂ep (τ, e)− ∂τp (τ, e)

}
. (4.40)

The inequality (4.40) is the sub-characteristic or Whitham condition [169] and ensures the
stability of the relaxation procedure. It imposes that the sound speed cτ of the system
(4.12) has to be greater than the sound speed c̄ = τ

√
p∂ep− ∂τp of the original model (4.1).

Moreover, for all τ > 0 and e > 0 satisfying (4.40), the definitions (4.29) and (4.30) of I and
J imply that the pair (I(p(τ, e), τ), J(p(τ, e), e)) belongs to A.

Now the following additional assumption is imposed to be satisfied by the pressure law:

Assumption 4.3.1. Assume the pressure law is such that the function τ 7→ fI,J(τ), defined
by (4.37), is strictly convex for all pair (I, J) fixed in A and admits at least one root τ̄ , which
is not a minimum.

Remark 4.3.1. Such assumptions are satisfied by the ideal gas law, given by

p(τ, e) = (γ − 1)
e

τ
.

Then the function fI,J writes

fI,J(τ) =
γ + 1

2
c2τ2 − γIτ + (γ − 1)J +

γ − 1

2c2
I2,

and fI,J is a second-order polynomial with a positive highest degree coefficient and is therefore
strictly convex. Moreover, the roots can be computed as

τ1,2 =
2γI

c2(γ + 1)
± 1

c2(γ + 1)

4γ2I2 − 2c2(γ2 − 1)(J +
I2

2c2
)︸ ︷︷ ︸

=K(I,J)


1
2

,

and it holds that with the definitions (4.33) there is

K(I, J) = 4γ2p2 + 4c2γpτ(γ − 1) + c4τ2(3γ2 + 1)
γ≥1
> 0.

Since there is at least one pressure law satisfying assumption (4.3.1), the next step is to
uniquely define the values τ̄ and ē.

Definition 4.3.1. When the function fI,J admits more than one root within R+, let by
τ(I, J) be defined the largest one and ē is defined by

e(I, J) = J +
(I − c2τ(I, J))2

2c2
. (4.41)
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The following result connects Assumption 4.3.1 with the existence and uniqueness of the
pair (τ̄ , ē) as well as their consistency.

Lemma 4.3.2. Let c > 0 be given. When they are defined, the functions τ and e satisfy for
all (I, J) in A:

I = p(τ(I, J), e(I, J)) + c2τ(I, J), (4.42)

J = e(I, J)− p(τ(I, J), e(I, J))2

2c2
, (4.43)

c2 > p (τ(I, J), e(I, J)) ∂ep (τ(I, J), e(I, J))− ∂τp (τ(I, J), e(I, J)) . (4.44)

Moreover, for all τ > 0 and e > 0 which satisfy the Whitham condition (4.40), the reals
τ (I(p(τ, e), τ)), J(p(τ, e), e)) and e (I(p(τ, e), tau)), J(p(τ, e), e)) are well-defined and satisfy

τ (I(p(τ, e), τ), J(p(τ, e), e)) = τ, (4.45)

e (I(p(τ, e), τ), J(p(τ, e), e)) = e. (4.46)

Proof. By definition of τ as root of fI,J , one immediately has relation (4.42). Relation
(4.43) follows from (4.42) and the definition of e given by (4.41).

To establish inequality (4.44), compute the derivative of fI,J :

∂

∂τ
fI,J(τ) =

(
p+ τ∂τp− (I − c2τ)τ∂ep+ 2c2τ − I

)(
τ, J +

(I − c2τ)2

2c2

)
.

Using relations (4.42) and (4.43) gives

∂

∂τ
fI,J(τ) = τ

(
c2 + ∂τp(τ , e)− p(τ , e)∂ep(τ , e)

)
.

Since by assumption 4.3.1 fI,J is strictly convex and its root is not a minimum, there is
∂
∂τ fI,J(τ) > 0 at its largest root and therefore (4.44) holds.

Finally, given τ > 0 and e > 0, it is straightforward to get

(fI,J)∣∣∣∣∣∣ I=I(p(τ,e),τ)

J=J(p(τ,e),e)

(τ) = 0,

and (
∂

∂τ
fI,J

)∣∣∣∣∣∣ I=I(p(τ,e),τ)

J=J(p(τ,e),e)

(τ) = τ(c2 + ∂τp(τ, e)− p(τ, e)∂ep(τ, e) > 0,

since the Whitham condition (4.40) is satisfied. The function fI,J being strictly convex, it
cannot have more than one root where the derivative is positive. Consequently (4.45) holds.
Relation (4.46) comes directly from the definition (4.41) of e.

It should be remarked that in general τ̄(I(W ), J(W )) 6= τ and ē(I(W ), J(W )) 6= e. The
pair (τ̄ , ē) is artificial and only helps to define the bound on the entropy. However, it has been
shown that the system (4.33) can be solved for τ̄ and ē. Especially, when I = I(Weq) and
J = J(Weq), then (4.45) and (4.46) give the consistency of the proposed solution strategy.
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Defining the following set

E =
{
W ∈ O; (I(W ), J(W )) ∈ A, c2 > p (τ, e) ∂ep (τ, e)− ∂τp (τ, e)

}
. (4.47)

allows for a more precise definition of the quantity s̄ in contrast to (4.32) as

s(W ) = s(τ(I(W ), J(W )), e(I(W ), J(W ))), (4.48)

since according to Lemma 4.3.2, the quantities τ(I(W ), J(W )) and e(I(W ), J(W )) are
well-defined as soon as W belongs to the set E . Lemma 4.3.2 together with (4.48) gives
immediately the consistency property of the function s with respect to s, i.e.

s̄(τ̄(I(Weq), J(Weq)), ē(I(Weq), J(Weq))) = s̄(τ, e) = s. (4.49)

What is left to show is that s̄ reaches its minimum when the relaxation variables are on
the equilibrium manifold. The following notations are introduced for the sake of simplicity

τ = τ(I(W ), J(W )), e = e(I(W ), J(W )), p = p(τ , e). (4.50)

Lemma 4.3.3. For all W ∈ E, there is

s(W ) ≥ s (τ, e) . (4.51)

Proof. In order to show (4.51) it is sufficient to show

∂πs(Weq) = 0, (4.52)

and

∂ππs(Weq) > 0. (4.53)

Therefore, first evaluate the first derivative of s̄ with respect to π as

∂πs = ∂τs∂πτ + ∂es∂πe. (4.54)

To get the derivatives ∂πτ and ∂πe first derive the relations (4.42) and (4.43) from lemma
4.3.2 to get

∂πI = ∂πτ∂τp+ ∂πe∂ep+ c2∂πτ ,

∂πJ = ∂πe(I, J)− p̄

c2
(∂πτ∂τ̄ p̄+ ∂πe∂ep).

(4.55)

On the other hand, from (4.29) and (4.30) there is

∂πI = 1,

∂πJ = − π
c2
.

(4.56)

Using (4.55) and (4.56) gives then

100



4 A Well-Balanced Suliciu Relaxation Scheme for the Euler Equations with Gravity

∂πτ =
(p− π)∂ep− c2

c2 (p∂ep− ∂τp− c2)
,

∂πe =
1

∂ep

(
1− (∂τp+ c2)∂πτ

)
.

(4.57)

Therefore (4.54) can be rewritten to get

∂πs =
(p− π)(∂τs∂ep− ∂τp∂es− c2∂es) + c2(p∂es− ∂τs)

c2(p∂ep− ∂τp− c2)
. (4.58)

However, by the definition of the specific entropy (1.35), there is

∂τs = p∂es, (4.59)

and the relation (4.58) can be further simplified to get

∂πs =
p− π
c2

∂es. (4.60)

This proofs (4.52), since due to the consistency relations (4.45) and (4.46)

p|π=p(τ,e) = p

(
τ

(
p(τ, e) + c2τ, e− p(τ, e)2

2c2

)
, e

(
p(τ, e) + c2τ, e− p(τ, e)2

2c2

))
= p(τ, e).

Finally, deriving (4.60) again with respect to π, there is

∂ππs =
∂es

c2
(∂es∂τp+ (p− π)∂τes) ∂πτ +

1

c2
(∂es∂ep+ (p− π)∂ees) ∂πe−

∂es

c2
.

Use again the relations (4.57) to get

∂ππs =
1

a4(p∂ep− ∂τp− c2)

(
(p− π)2

(
∂ep∂τes− ∂ees∂τp− c2∂ees

)
+c2(p− π) (p∂ees− ∂τes− ∂ep∂es) + a4∂es

)
. (4.61)

Furthermore deriving (4.59) with respect to e gives

∂τes = p∂ees+ ∂ep∂es,

to finally get

∂ππs =
(p− π)2

c4
∂ees+

∂es

c4(p∂ep− ∂τp− c2)

(
(p− π)∂ep− c2

)2
. (4.62)

Since (τ, e) 7→ s(τ, e) is a strictly convex function, ∂ees > 0. On the other hand, from the
inequalities (1.35), there is ∂es < 0. Since the sub-characteristic condition (4.40) is assumed
to hold, there finally is ∂ππs > 0, which concludes the proof.
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Equipped with the minimization principle (4.51) and the consistency relation (4.49), it is
straightforward to see that since IL,R = I∗L,R and JL,R = J∗L,R, the relation (4.27) holds true,
i.e.

s̄(τ̄(I(WL), J(WL)), ē(I(WL), J(WL))) = s̄(τ̄(I(W ∗L), J(W ∗L)), ē(I(W ∗L), J(W ∗L))),

s̄(τ̄(I(WR), J(WR)), ē(I(WR), J(WR))) = s̄(τ̄(I(W ∗R), J(W ∗R)), ē(I(W ∗R), J(W ∗R))).
(4.63)

Moreover, if WL,R and W ∗L,R belong to E , then the following relations hold

s̄(τ̄(I(WL), J(WL)), ē(I(WL), J(WL))) = s(τL, eL),

s̄(τ̄(I(W ∗L), J(W ∗L)), ē(I(W ∗L), J(W ∗L))) ≥ s(τ∗L, e∗L),

s̄(τ̄(I(W ∗R), J(W ∗R)), ē(I(W ∗R), J(W ∗R))) ≥ s(τ∗R, e∗R),

s̄(τ̄(I(WR), J(WR)), ē(I(WR), J(WR))) = s(τR, eR).

(4.64)

This gives the bound on the entropy for the approximate Riemann solver derived from the
relaxation system (4.12) and the following theorem can be proven.

Theorem 4.3.1. Let WL and WR be two states of Ωphys. Consider a smooth function F
such that the hypotheses (1.38) are satisfied. Let c > 0 be a parameter such that the following
sub-characteristic Whitham conditions hold:

c2 > p (τL, eL) ∂ep (τL, eL)− ∂τp (τL, eL) , , (4.65a)

c2 > p (τ∗L, e
∗
L) ∂ep (τ∗L, e

∗
L)− ∂τp (τL∗, e∗L) , , (4.65b)

c2 > p (τ∗R, e
∗
R) ∂ep (τ∗R, e

∗
R)− ∂τp (τ∗R, e

∗
R) , , (4.65c)

c2 > p (τR, eR) ∂ep (τR, eR)− ∂τp (τR, eR) .. (4.65d)

Fix ∆t > 0 and ∆x > 0 two constants such that the following (CFL) restriction is satisfied:

∆t

∆x
max

{∣∣∣∣uL − c

ρL

∣∣∣∣ , ∣∣∣∣uR +
c

ρR

∣∣∣∣} ≤ 1

2
. (4.66)

Moreover, assume that the pressure law satisfies Assumption 4.3.1. Then the approximate
Riemann solver (4.14) satisfies the inequalities

1

∆x

∫ ∆x/2

0
(ρF(s))

(
WR

( x

∆t
;wL, wR

))
dx ≤ ρRF(sR)

2

− ∆t

∆x
(ρRF(sR)uR − {ρF(s)u}L,R) , (4.67)

1

∆x

∫ 0

−∆x/2
(ρF(s))

(
WR

( x

∆t
;wL, wR

))
dx ≤ ρLF(sL)

2

− ∆t

∆x
({ρF(s)u}L,R − ρLF(sL)uL) , (4.68)
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where there is

{ρF(s)u}L,R =


ρLF(sL)uL if 0 < uL − c

ρL
,

ρ∗LF(sL)u∗ if uL − c
ρL
< 0 < u∗,

ρ∗RF(sR)u∗ if u∗ < 0 < uR + c
ρR
,

ρRF(sR)uR if uR + c
ρR

< 0.

(4.69)

Proof. Consider the weak solutions of the relaxation model (4.12), with an initial condition
given by

W (x, 0) =

{
Weq(UL) if x < 0,

Weq(UR) if x > 0.

The function W 7→ s(W ), defined by (4.48), only depends of I and J , so Lemma 4.3.1
ensures that the weak solutions of (4.12) satisfy the additional following conservation law:

∂tρF(s) + ∂xρF(s)u = 0.

Integrate this equation over [0,∆x/2)× [0,∆t) to get

∫ ∆x/2

0
(ρF(s))

(
WR

( x

∆t
;Weq(UL),Weq(UR)

))
dx =∫ ∆x/2

0
(ρF(s))(W (x, 0))dx−∆t(ρF(s)u)

(
WR

(
∆x

2∆t
;Weq(UL),Weq(UR)

))
+ ∆t(ρF(s)u) (WR (0;Weq(UL),Weq(UR))) . (4.70)

Since the state Weq(UR) is at the relaxation equilibrium, the following sequence of equalities
holds for x ∈ [0,∆x/2):

(ρF(s))(W (x, 0)) = (ρF(s))(Weq(UR)) = (ρF(s))(Weq(UR)) = ρRF(sR). (4.71)

On the other hand, the CFL restriction (4.66) implies for all x ∈ [0,∆x/2):

WR

(
∆x

2∆t
;Weq(UL),Weq(UR)

)
= Weq(UR).

As a consequence, the first flux term in (4.70) writes

(ρF(s)u)

(
WR

(
∆x

2∆t
;Weq(UL),Weq(UR)

))
= ρRF(sR)uR. (4.72)

Now, since the relations (4.63) and (4.64) are valid and the function F is increasing due
to (1.38), there is

F(s)
(
WR

( x

∆t
;W eq(wL),W eq(wR)

))
≥ F(s)

(
weq

( x

∆t
;wL, wR

))
,

which gives the inequality (4.67).
The proof for the inequality (4.68) is similar and therefore omitted.

With the inequalities (4.67) and (4.68), theorem 2.2.2 can be applied to prove the entropy
stability of the scheme.
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4.4 Definition of the Numerical Scheme

4.4 Definition of the Numerical Scheme

Following the lines of section 2.4, the Euler equations with gravity (4.1) are discretized as
given in (2.80), i.e.

Ui,t +
1

∆xi

(F+
i− 1

2

−F−
i+ 1

2

) =
1

∆xi

∫ xi

x
i− 1

2

Si(Wi− 1
2
(t, x))Zxdx+

1

∆xi

∫ x
i+ 1

2

xi

Si(Wi+ 1
2
(t, x))Zxdx.

(4.73)

However, in section 2.4 it is argued that Z is constant inside each cell Vi and therefore the
integrals on the right hand side vanish. Since the source term in the relaxation model (4.12)
satisfies a transport relation, it is not constant anymore inside each cell and the right hand
side of (4.73) has to be taken into account.

In the model (4.12), the source term is approximated by a quadrature to derive the well-
balanced property and advected with the fluid flow. Therefore the integrals in (4.73) are
evaluated as

∫ xi

x
i− 1

2

Si(Wi− 1
2
(t, x))Zxdx = Si,i− 1

2

=

(0, 0, 0)T if u∗
i− 1

2

≤ 0,(
0,−ρ(ρi−1, ρi)(Φi − Φi−1),−ρ(ρi−1, ρi)u

∗
i− 1

2

(Φi − Φi−1)
)T

if u∗
i− 1

2

> 0,
(4.74)

∫ x
i+ 1

2

xi

Si(Wi+ 1
2
(t, x))Zxdx = Si,i+ 1

2

=

(0, 0, 0)T if u∗
i+ 1

2

≥ 0,(
0,−ρ(ρi, ρi+1)(Φi+1 − Φi),−ρ(ρi, ρi+1)u∗

i+ 1
2

(Φi+1 − Φi)
)T

if u∗
i+ 1

2

< 0.
(4.75)

With the definitions (4.74) and (4.75), the scheme (4.73) can be rewritten in the following
way

Ui,t +
1

∆xi

(G+
i− 1

2

−G−
i+ 1

2

) = 0, (4.76)

with the definitions

G+
i− 1

2

= F+
i− 1

2

− Si,i− 1
2
,

G−
i+ 1

2

= F−
i+ 1

2

+ Si,i+ 1
2
.

(4.77)

Observe that the scheme (4.76) still satisfies the well-balanced property (2.82), since in
equilibrium Si,i± 1

2
= 0

Next, the extension to a formally second order scheme uses, similar to section 3.2, a
variant of the surface gradient method from [175]. The discrete equilibrium preserved by the
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numerical scheme writes as follows
ui−1 = ui = ui+1 = 0,

pi − pi−1 = −ρ(ρi−1, ρi)(Φi − Φi−1),

pi+1 − pi = −ρ(ρi, ρi+1)(Φi+1 − Φi).

(4.78)

In order to apply the surface gradient method, first the following transformation is applied
Qii−1 = pi−1 − ρ(ρi−1, ρi)(Φi − Φi−1),

Qii = pi,

Qii+1 = pi+1 + ρ(ρi, ρi+1)(Φi+1 − Φi).

(4.79)

Qi reflects the equilibrium relation between the pressure and the gravitational acceleration.
However, the projection to the variable Qi is local, i.e. for every cell Vi the projection will
give different states Qi.

The slopes in the cell Vi are then computed following the lines of section 2.3.1 on the
variables ρ, u and Qi to get the slopes σρ,i,σu,i and σQi,i. Then, the interface values are
computed as 

ρ∓
i± 1

2

= ρi + σρ,i(xi± 1
2
− xi),

u∓
i± 1

2

= ui + σu,i(xi± 1
2
− xi),

p∓
i± 1

2

= pi + σQ,i(xi± 1
2
− xi),

(4.80)

and from (4.80), the dependent variables ρ, ρu,E can be recovered. Similar as in the case
of the shallow water equations, see section 3.2, the projection on the equilibrium variables
has the advantage that, if the data is in equilibrium, i.e. the relations (4.78) hold, the slopes
σu,i and σQ,i are zero. Therefore, the interface values for the pressure and velocity coincide
with the cell centered values. However, due to the reconstruction in ρ, the interface values
might not coincide with the cell centered values. Nonetheless, evaluating the quadrature for
the source term at the cell centered values as in (4.74) and (4.75) gives that the approximate
Riemann solver defined by the relaxation system (4.12) satisfies u∗

i± 1
2

= 0. Therefore, the

densities do not contribute to the flux function and it holds that

G+
i− 1

2

= G−
i+ 1

2

, (4.81)

and the well-balanced property is achieved. The robustness of the reconstruction is
achieved as soon as the projected variables Qii±1 are bounded from below by zero. Then, if
for example a minmod limiter is used to compute the slopes, it holds that p∓

i± 1
2

∈ [pi; pi±1]

and the interface values are in Ωphys.

The extension to more than one space dimension is straightforward following the lines of
section 2.5.

4.5 Numerical results

The aim of this section is to show the applicability of the proposed scheme. Similar to
numerical experiments in chapter 3, in all tests, an equidistant grid is concerned. Denote by
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D the length of the domain and by Nx the number of cells, then there is ∆x = D
Nx

.

In all the applications, the pressure will be given by an ideal gas law

p = (γ − 1)ρe,

where the adiabatic coefficient is set to γ = 5
3 .

In [55], the presented scheme already has been shown to perform well on testcases proposed
in the respective literature. Here it is chosen to put emphasis on the influence of the choice
of the different quadratures presented in section 4.2 also with respect to the mesh size. A
fractional splitting of the source term for comparison is not considered. It is rather obvious
that fractional splitting schemes have strong difficulties achieving the well-balanced property.
Concern for this that the numerical fluxes computed without accounting for the source term
admits non-zero velocities due to the pressure stratification along the atmosphere. Therefore
there are non-zero mass fluxes in the first update. However, the physical source term is zero
in the mass component and therefore artificial terms in the source term discretization would
be needed to counter the errors introduced by the previous upwind procedure.

The different quadratures to be used by the numerical scheme are given as

ρ̄(WL,WR)ISO =
ρR − ρL

ln(ρR)− ln(ρL)
,

ρ̄(WL,WR)PG =
Γ− 1

Γ

ρΓ
R − ρΓ

L

ρΓ−1
R − ρΓ−1

L

,

ρ̄(WL,WR)PI =
1

R

pR − pL
ln(pR)− ln(pL)

ln(TR)− ln(TL)

TR − TL
,

ρ̄(WL,WR)AV =
ρR + ρL

2
,

and the schemes equipped with these quadratures are denoted as SRISO, SRPG, SRPI
and SRAV respectively. As has been shown in the previous section, the first quadrature is
consistent with an isothermal atmosphere. The second quadrature is consistent with a poly-
tropic steady state for an arbitrary pressure law. The last one is just a simple average and is
used for comparison of the different quadratures. However, for Γ = 2, the arithmetic average
coincides with the polytropic quadrature. For the third quadrature a straightforward com-
putation shows that it is consistent with the polytropic states if an ideal gas law is assumed.
It has the advantage, that the parameter Γ does not need to be specified. Moreover, the
second and third quadrature coincide with the first in the case of an isothermal atmosphere.

The different schemes are also tested with first and second order accuracy, denoted by
SRFO and SRSO respectively. For the second order accuracy in space, the reconstructions
presented in section 4.4 are used with the respective quadratures to determine the slope in
the pressure. For the second order accuracy in time, the modified Heun method from [14] is
used, which is also discussed in section 2.3.2.

106



4 A Well-Balanced Suliciu Relaxation Scheme for the Euler Equations with Gravity

SRFOISO SRSOISO SRFOAV SRSOAV
N u u u EOC u EOC

100 0.61E-16 1.46E-16 1.35E-04 - 1.37E-04 -
200 0.82E-16 1.91E-16 3.41E-05 1.99 3.44E-05 1.99
400 0.40E-16 1.40E-16 8.57E-06 1.99 8.61E-06 1.99
800 2.67E-16 1.12E-16 2.15E-06 2.00 2.15E-06 2.00
1600 5.24E-16 1.69E-15 5.38E-07 2.00 5.38E-07 2.00
3200 5.34E-16 1.29E-15 1.35E-07 1.99 1.36E-07 1.98

Table 4.1: L1 errors for the undisturbed isothermal equilibrium (4.82)-(4.83) at time 0.2
for the schemes based on two different quadratures and different orders of accuracy.

4.5.1 An Isothermal Atmosphere

The first tests are concerned with approximations close to an isothermal atmosphere. Con-
sider the following setup for an isothermal atmosphere

Φ(x) = cos(2π),

R = 1,

T = 1.

(4.82)

Then the hydrostatic equilibrium reads
u(x)eq = 0,

ρ(x)eq = exp(− cos(2π)),

p(x)eq = exp(− cos(2π)).

(4.83)

The hydrostatic equilibrium (4.82) and (4.83) is now used as an initial condition for the
schemes SRISO and SRAV and its evolution is computed. The L1 errors for the velocity are
given in table 4.1.

As expected, the schemes based on the isothermal quadrature preserve the isothermal
equilibrium up to machine precision. In contrast the schemes SRAV both at first and second
order introduce spurious oscillations. Even going higher order in the way suggested here
does not reduce the numerical errors. However, also independent of the order of the scheme,
the error decreases with second order.

The second order accuracy can be computed analytically for the quadrature. Consider
that there is

pi+1 − pi
2∆x

=
∂

∂x
pi+ 1

2
+O(∆2

x),

Φi+1 − Φi

2∆x
=

∂

∂x
Φi+ 1

2
+O(∆2

x),

ρi+1 + ρi
2

= ρi+ 1
2

+O(∆2
x).

Combining these gives that
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SRFOISO SRSOISO SRFOAV SRSOAV
N u u u EOC u EOC

100 3.67E-14 1.80E-13 1.23E-11 - 1.80E-13 -
200 3.19E-13 3.08E-13 3.86E-12 - 3.08E-13 -
400 7.53E-13 6.07E-13 1.38E-11 - 6.07E-13 -
800 5.06E-13 2.81E-13 4.45E-12 - 2.82E-13 -
1600 3.27E-12 2.84E-12 4.96E-12 - 2.84E-12 -
3200 1.19E-13 6.72E-13 2.43E-13 - 6.72E-13 -

Table 4.2: L1 errors for the undisturbed isothermal equilibrium (4.84)-(4.85) at time 0.2
for the schemes based on two different quadratures and different orders of accuracy.

pi+1 − pi + ρ̄AV (Φi+1 − Φi) +O(∆2
x) =

∂

∂x
pi+ 1

2
+ ρi+ 1

2

∂

∂x
Φi+ 1

2
.

Therefore, by using the closure (4.16), a second order approximation to all hydrostatic
equilibria is enforced to hold on the centered wave. Hence, better approximations are
achieved when the mesh size ∆x is decreased.

Moreover, the quality of the approximation does not only depend on ∆x, but also on some
constant that depends on the structure of the hydrostatic equilibrium. To see this, consider
the following isothermal equilibrium, where

Φ(x) = gx,

g = 9.81,

R = 8.3144598,

T = 300,

Cρ = 1.225,

(4.84)

and the solution is given by 
u(x)eq = 0,

ρ(x)eq = Cρ exp(−gx),

p(x)eq = CρRT exp(−gx),

(4.85)

and Cρ = 1.225. Again both schemes are used to integrate the hydrostatic equilibrium in
time and the errors are given in table 4.2. Now the errors for the non-well-balanced scheme
have drastically decreased and are on the order of machine accuracy. Therefore, even if
the well-balance property does not hold exactly, one might still hope for a reasonable good
approximation if the respective equilibrium shows a suitable scaling.

Next, the numerical approximations of a small disturbance on the isothermal equilibrium
(4.82)-(4.83) is concerned. For this, the initial pressure distribution is modified as follows

p(0, x)− p(x)eq =

{
0.05× 10−3 sin( x−x0

x1−x0
π) if x0 < x < x1,

0 else,
(4.86)

for x0 = 0.45 and x1 = 0.55.
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Fig. 4.4: Solutions to the isothermal equilibrium (4.82)-(4.83) with perturbation at time 0.2
computed with 100 cells. Left: Comparison of the first order schemes. Right: Comparison
of the second order schemes.
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Fig. 4.5: Solutions to the isothermal equilibrium (4.82)-(4.83) with perturbation at time
0.2. The first and second order schemes are computed with 100 cells, the reference solution
is computed with 3200 cells.

First, the two schemes SRISO and SRAV are compared on different orders of accuracy.
The results are depicted in figure 4.4. It can be seen that for the scheme SRAV the numerical
errors dominate the dynamics and the resulting waves are poorly resolved in the first order
case, as well as in the second order case. In contrast to that, the scheme SRISO shows
a good resolution of the waves. Next the results for the scheme SRISO are compared on
different orders with respect to a reference solution computed at high resolution, see figure
4.5. The second order scheme performs better than the first order scheme in capturing the
waves resulting from the perturbation, while both schemes seem to be in a good agreement
with the reference solution.
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SRFOPG SRSOPG SRFOISO SRSOISO
N u u u EOC u EOC

100 0.73E-16 3.23E-16 1.90E-05 - 1.94E-05 -
200 1.63E-16 2.10E-16 4.80E-06 1.98 4.87E-06 1.99
400 0.95E-16 4.82E-16 1.21E-06 1.99 1.22E-06 2.00
800 1.40E-16 5.80E-16 3.04E-07 1.99 3.05E-07 2.00
1600 1.86E-16 7.31E-16 7.61E-08 2.00 7.63E-08 2.00
3200 1.18E-15 2.66E-15 1.90E-08 2.00 1.91E-08 2.00

Table 4.3: L1 errors for the undisturbed polytropic equilibrium (4.87)-(4.89) at time 0.2
for the schemes SRPG and SRISO for different orders of accuracy.

4.5.2 A Polytropic Atmosphere

Consider now a polytropic atmosphere as
Φ(x) = cos(2π),

p(x) = Kρ(x)Γ,

u(x) = 0.

(4.87)

Then the solution to (4.87) is given in (4.6) asρ(x) =
(

Γ−1
ΓK (C − Φ(x))

) 1
Γ−1 ,

p(x) = K
1

1−Γ
(

Γ−1
Γ (C − Φ(x))

) Γ
Γ−1 ,

(4.88)

and the coefficients are chosen to be 
Γ = 3,

K = 1.5,

C = 2.

(4.89)

For the numerical tests, periodic boundary conditions are considered and the L1 errors
are given in table 4.3 and table 4.4. The schemes SRPG and SRPI show the expected
well-balanced property, while the other schemes introduce numerical errors. However, these
errors again decrease with higher resolution with second order of the cell sizes.

Next, as in the case of the isothermal atmosphere, a perturbation on top of the polytropic
atmosphere is considered as

p(0, x)− p(x)eq =

{
0.05× 10−3 sin( x−x0

x1−x0
π) if x0 < x < x1,

0 else,
(4.90)

for x0 = 0.45 and x1 = 0.55. At first the first order schemes are compared for their perfor-
mance, see figure 4.6. As expected, the schemes SRPI and SRPG show a better resolution
of the waves compared with the other schemes due to their consistency with the polytropic
equilibrium. Moreover, the schemes SRPI and SRPG give almost identical results. In fig-
ure 4.7, the results for the scheme SRPI are compared at different orders of accuracy with
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SRFOPI SRSOPI SRFOAV SRSOAV
N u u u EOC u EOC

100 1.03E-16 1.22E-16 9.46E-06 - 9.69E-06 -
200 1.97E-16 3.30E-16 2.40E-06 1.98 2.43E-06 2.00
400 1.77E-16 2.66E-16 6.05E-06 1.99 6.09E-07 2.00
800 2.10E-16 1.50E-15 1.52E-07 2.00 1.52E-07 2.00
1600 2.32E-16 2.34E-15 3.81E-08 2.00 3.81E-08 2.00
3200 4.96E-16 3.27E-15 9.52E-09 2.00 9.54E-09 2.00

Table 4.4: L1 errors for the undisturbed polytropic equilibrium (4.87)-(4.89) at time 0.2
for the schemes SRPI and SRAV for different orders of accuracy.

respect to a reference solution. Again the second order approach increases the resolution of
the waves and both schemes are in good agreement with the reference solution.

4.5.3 General steady state

A last one dimensional test case concerns a general steady state that does not belong to the
polytropic family described by (4.6). It is a popular test for determining the behavior of a
well-balanced scheme in a general stratified atmosphere and is investigated in [97] and [12].
The gravitational potential is here defined by

Φ(x) = − sin(2πx), (4.91)

and the equilibrium is given by the following distributions
ρ(x) = 3 + 2 sin(2πx),

u(x) = 0,

p(x) = 3 + 3 sin(2πx)− 0.5 cos(4πx).

(4.92)

Periodic boundary conditions are imposed for the simulations. It is decided to test again
all the schemes described above, where for the general polytropic quadrature a value of
Γ = 2 is chosen. The results are given in the table 4.5 and table 4.6. As it turns out, the
scheme SRAV is consistent with the proposed equilibrium. Since for Γ = 2 the quadratures
ρ̄PG and ρ̄AV are equivalent, also the scheme SRPG shows a suitable well-balanced property.
However, the general equilibrium (4.91)-(4.92) is not a polytropic equilibrium and therefore
the scheme SRPI introduces numerical errors.

Again, a small perturbation in pressure on top of the general equilibrium is considered as

p(0, x)− p(x)eq =

{
0.05× 10−3 sin( x−x0

x1−x0
π) if x0 < x < x1,

0 else,
(4.93)

for x0 = 0.20 and x1 = 0.30. The first order results are depicted in figure 4.8. As expected,
the schemes SRAV and SRPG perform well and no relevant numerical errors due to the
stratification of the hydrostatic equilibrium are introduced. In contrast, the schemes SRISO
and SRPI are not able to accurately capture the waves. Moreover, the schemes SRAV
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Fig. 4.6: Solutions to the polytropic equilibrium (4.87)-(4.89) with perturbation at time
0.2 computed with 100 cells. Top Left: Comparison of the first order schemes SRPG and
SRISO. Top Right: Comparison of schemes SRPI and SRAV . Bottom: Comparison of
schemes SRPI and SRPG.
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Fig. 4.7: Solutions to the polytropic equilibrium (4.87)-(4.89) with perturbation at time
0.2 comparing the different orders of accuracy for the scheme SRPI with 100 cells. The
reference solution is computed with 3200 cells.
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SRFOPG SRSOPG SRFOISO SRSOISO
N u u u EOC u EOC

100 0.76E-16 1.73E-15 4.13E-05 - 4.65E-05 -
200 0.45E-16 8.00E-16 9.97E-06 2.05 1.08E-05 2.11
400 0.60E-16 4.67E-15 2.45E-06 2.02 2.56E-06 2.08
800 2.00E-16 1.40E-15 6.10E-07 2.01 6.21E-07 2.04
1600 1.41E-15 1.31E-14 1.52E-07 2.00 1.53E-07 2.02
3200 1.53E-15 2.81E-14 3.79E-08 2.01 3.81E-08 2.01

Table 4.5: L1 errors for the undisturbed general equilibrium (4.91)-(4.92) at time 1.0 for
the schemes SRPG and SRISO for different orders of accuracy.

SRFOAV SRSOAV SRFOPI SRSOPI
N u u u EOC u EOC

100 0.49E-16 3.53E-16 9.03E-06 - 1.06E-05 -
200 0.83E-16 4.40E-16 2.20E-06 2.04 2.43E-06 2.13
400 1.39E-16 4.90E-15 4.47E-07 2.30 5.76E-07 2.08
800 0.60E-16 6.14E-15 1.36E-07 1.72 1.40E-07 2.04
1600 4.10E-15 1.75E-14 3.40E-08 2.00 3.45E-08 2.02
3200 1.18E-15 1.87E-14 8.50E-09 2.00 8.55E-09 2.01

Table 4.6: L1 errors for the undisturbed general equilibrium (4.91)-(4.92) at time 1.0 for
the schemes SRAV and SRPI for different orders of accuracy.
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Fig. 4.8: Solutions to the general equilibrium (4.91)-(4.92) with perturbation at time 0.1.
Top Left: Comparison of the first order schemes SRAV and SRISO computed with 100 cells.
Top Right: Comparison of schemes SRPG and SRPI computed with 100 cells. Bottom
Left : Comparison of schemes SRAV and SRPG computed with 100 cells. Bottom Right:
Comparison of schemes SRAV and SRISO computed with 1000 cells.

and SRPG give almost identical results. As can be seen from the tables 4.5 and 4.6, if
a scheme is not exactly well-balanced, the discretization errors are decreasing with second
order. Therefore, if the resolution is increased, even a non consistent scheme may be able
to capture the resulting dynamics. This is shown on the bottom left of figure 4.8. Here, the
consistent scheme SRAV is compared with the non consistent scheme SRISO, but now on a
higher resolution. Both schemes now give comparable results for the approximation of the
waves. Finally, also the second order extension is shown to achieve the expected results, see
figure 4.9.

4.5.4 An Isothermal Atmosphere in 2 Space Dimensions

The last test in this chapter concerns a two dimensional atmosphere. It is intended to show,
that the well-balanced property derived for the one dimensional schemes extends to the two
dimensional case naturally, if the approach presented in section 2.5 is used. For this, consider
the following isothermal equilibrium
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Fig. 4.9: Solutions to the polytropic equilibrium (4.91)-(4.92) with perturbation at time
0.1 comparing the different orders of accuracy for the scheme SRAV with 100 cells. The
reference solution is computed with 3200 cells.


Φ(x, y) = cos((x− 0.5)π) cos((y − 0.5)π),

R = 1,

T = 1,

(4.94)

and the distribution for the dependent variables reads
u(x, y)eq = 0,

ρ(x, y)eq = exp(−Φ(x, y)),

p(x, y)eq = exp(−Φ(x, y)).

(4.95)

To show the performance in the two dimensional case, a disturbance on the pressure is
considered in the following way

p(0, x, y)− p(x, y)eq =

{
10−4 sin( rd−||x−cd||2rd

) if ||x− cd|| ≤ rd,
0 otherwise,

(4.96)

with rd = 0.05 and cd = (0.5, 0.5)T . The computational domain is set D = [0, 1] × [0, 1]
and Neumann boundary conditions are imposed. The scheme SRISO is applied to compute
the evolution of the perturbation, see figure 4.10. The scheme performs as expected and the
dynamics of the perturbation is captured accurately without introducing artificial numerical
errors.

In this work, the scheme is tested on a cartesian mesh. In [141] it is shown, that the scheme
can also be extended to unstructured meshes underlining the flexibility of the presented well-
balanced approach.

115



4.5 Numerical results

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

p - peq

0.000006

0.000004

0.000002

0.000000

0.000002

0.000004

0.000006

0.000008

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

p - peq

0.000006

0.000004

0.000002

0.000000

0.000002

0.000004

0.000006

0.000008

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

p - peq

0.000009

0.000006

0.000003

0.000000

0.000003

0.000006

0.000009

0.000012

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

p - peq

0.000009

0.000006

0.000003

0.000000

0.000003

0.000006

0.000009

0.000012

Fig. 4.10: Solutions to the isothermal equilibrium (4.94)-(4.95) with perturbation (4.96)
at time 0.1. Top Left: Scheme SRFOISO computed with 100 × 100 cells. Top Right: Scheme
SRSOISO computed with 100×100 cells. Bottom Left : Scheme SRFOISO computed with 400×400
cells. Bottom Right: Scheme SRSOISO computed with 400× 400 cells.
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5 A Low Diffusion Suliciu Relaxation Scheme
for Low Mach Number Flows

This chapter is concerned with the approximations to the solutions to the compressible Euler
equations in the regime of low Mach numbers. It is discussed in section 1.3.2 that, when the
Mach number tends to zero, the compressible Euler equations (1.32) reach in the limit the
incompressible equations (1.52). In order to find the limit behavior, the Euler equations are
non-dimentionalized, which leads to the following system

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + I p
M2 ) = 0,

Et +∇ · (u(E + p)) = 0,

(5.1)

where the total energy is given by E = ρe+M2ρu2

2 . In the following, approximations are
computed with respect to the non-dimentionalized system (5.1). It admits a set of physical
admissible states

ΩPhys = {(ρ, ρu, E) ∈ R5; ρ > 0, e > 0}, (5.2)

and a set of asymptotic preserving states

ΩAP = {(ρ, (ρu), E) ∈ R5;∇p0 = ∇p1 = 0,∇ρ0 = 0,∇ · u0 = 0}. (5.3)

As also discussed in section 1.3.2, it is a necessary condition for the limit behavior to the
incompressible equations to hold that the dependent variables are in the set (5.3).

There have been different approaches to design low Mach number schemes, which are
based on different aspects of the limit to the incompressible equations. The first concept
mentioned here are the so called asymptotic preserving schemes. The underlying equations
give rise to a limit behavior depending on the Mach number. The numerical scheme in turn
should be consistent with that limit behavior. This is depicted in figure 5.1. A widely used
approach to deal with this problem is to split the stiff and non-stiff terms in the system
(5.1). Then the non-stiff parts are discretized in a time explicit and the stiff parts in a time
implicit way to ensure the stability of the scheme. This leads to the IMEX approach and it
is used for example in [22],[139],[86],[75] and [51]. The advantage of this splitting approach
is that the stiff parts give rise to a linear system, which reduces the computational efforts
when solving the coupled system for the variables at the new time step. The stiff part of
system (5.1) is strongly related to the pressure term and therefore these splitting approaches
often fall in the spirit of Klein [94], where a split of the pressure term into fast and slow
fluctuations is proposed. The splitting of the pressure is also critical when deriving the here
proposed relaxation scheme.

Another viewpoint on designing low Mach number schemes concerns directly the accuracy
of the numerical scheme. For example [162],[168] and [132] point out, that in the low Mach
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5.0

uM u0

UM∆ U0
∆

M → 0

continuum

∆→ 0

discrete

M → 0

∆→ 0

Fig. 5.1: Asymptotic Preserving Diagram: uM is a solution to (5.1) and u0 is a solution to
(1.52). UM∆ and U0

∆ are discrete approximations to the respective solutions.

number regime, standard upwind schemes suffer from excessive numerical diffusion. They
conclude that with respect to the central flux, the Roe scheme [147] introduces a diffusion
which scales as O( 1

M ). In order to get this result, the numerical flux is rewritten in the
following form

Fi± 1
2

=
1

2
(f(Ui−1) + f(Ui))−

1

2
Di−1,i(Ui − Ui−1). (5.4)

The diffusive part Di−1,i(Ui − Ui−1) then admits entries that scale inversely to the Mach
number. To cure this defect, a wide range of preconditioners have been developed to modify
the diffusion matrix of the Roe scheme. However, an application of these preconditioning
techniques to the relaxation scheme is difficult, since the diffusion matrix Di−1,i can in
general only be computed implicitly. For details on the derivation of the diffusion matrix
see Appendix B. Instead of computing the scaling of the diffusion from the diffusion matrix,
a more direct approach is used here.

Finally, the scaling of the dependent variables in the numerical scheme shall also reflect the
scaling in the continuous equations. This has been discussed for example by [52],[74],[136].
As already discussed in section 1.3.2, this gives a constraint on the scaling of the different
variables with respect to the Mach number in order to achieve the incompressible limit
equations. As have also been put forward by the same authors, standard upwind schemes
often violate the scaling of the pressure. In terms of the Roe scheme it has been found that it
introduces pressure fluctuations of order O(M) and therefore the incompressible limit might
not be achieved. This also leads to excessive diffusion in the low Mach number regime.

To be precise, in this chapter a scheme is developed, for which

Ω = ΩPhys ∩ ΩAP , (5.5)

is an invariant region, while the diffusion is controlled and the asymptotic behavior of the
underlying equations is reflected. However, the multidimensional operators used to define
the set ΩAP are very hard to satisfy exactly in a numerical approximation. Suitable discrete
approximations of these operators are given, when these properties are concerned.

In order to motivate the issue with the standard upwind schemes, the standard Suliciu
relaxation model is analyzed in section 5.1 for its low Mach number properties. Then in
section 5.2, the modified relaxation scheme is proposed and the low Mach number properties
are derived. Finally, in section 5.3, numerical results are given to show the applicability of
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the scheme.

5.1 The standard Suliciu relaxation model

In this section, the standard Suliciu relaxation scheme [47],[23],[156],[157] is analyzed for its
low Mach properties. The analysis is restricted on the one dimensional fluxes in x direc-
tion and is completely analogous for the other directions. The standard Suliciu relaxation
approach gives the following system

ρt
(ρu)t
(ρv)t
Et

(ρπ)t

+
+
+
+
+

(ρu)x
(ρu2 + π

M2 )x
(ρuv)x

(u(E + π))x
(ρuπ + c2u)x

=
=
=
=
=

0
0
0
0
0

, (5.6)

where the relaxation source term has been omitted for brevity.

Lemma 5.1.1. The system (5.6) is hyperbolic with eigenvalues λ± = u ± ρ
cM and λc = u,

where λu has multiplicity 3. For a given Riemann problem, it admits an explicit solution.

Proof. The proof is straightforward and left to the reader.

In order to determine the numerical fluxes, the Riemann problem for system (5.6) has
to be solved at the cell interfaces. As discussed in section 2.2.4, since the system (5.6) is
fully linear degenerate, it gives rise to a solution of the form (2.43), see also figure 2.4. The
intermediate states of the solution to the Riemann problem can be computed to be

πC = πL∗ = πR∗ =
πL + πR

2
− cM uR − uL

2
uC = uL∗ = uR∗ =

uL + uR
2

− πR − πL
2cM

τL∗ = τL +
πC − πL

c2
τR∗ = τR +

πR − πC
c2

eL∗ = eL −
π2
L − π2

C

2c2
eR∗ = eR −

π2
R − π2

C

2c2
.

In order to show the scaling of the intermediate states, make use of the scalings given in
(1.53),(1.54) and (1.55) and impose them on the initial conditions to get

πL = p0 and πR = p0 +O(M2),

τL = τ0 and τR = τ0 +O(M),

uL = u0 and uR = u0 +O(1),

vL = v0 and vR = v0 +O(1),

eL = e0 and eR = e0 +O(M).

(5.7)

With (5.7) one can determine the scaling of the intermediate states to be
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πC = p0 +O(M) and uC = u0 +O(1),

vLC = v0 and vRC = v0 +O(1),

τLC = τ0 +O(M) and τRC = τ0 +O(M),

eLC = e0 +O(M) and eRC = e0 +O(M),

(5.8)

and therefore there is

WL∗ ,WR∗ 6∈ ΩAP .

The most important factor here is the pressure πC , which admits variations of the order
O(M). Moreover, the failure of preserving the asymptotic behavior of the pressure leads
to excessive diffusion. As it is shown in the Appendix B, the diffusion matrix can not be
computed explicitly. Therefore it is decided to compute the diffusion with respect to the
central flux directly. Using the scalings (5.8) and plug them into the flux function to get

1

2
(fL + fR)−FL,R =


ρ0u0 +O(1)

ρ0u
2
0 + p0

M2 +O(1)
ρ0u0v0 +O(1)

u0(E0 + p0) +O(1)

−


ρ0u0 +O(1)
ρ0u

2
0 + p0

M2 +O( 1
M )

ρ0u0v0 +O(1)
u0(E0 + p0) +O(1)

 =


O(1)
O( 1

M )
O(1)
O(1)

 . (5.9)

Therefore excessive diffusion is expected in the momentum orthogonal to the interface.

Remark 5.1.1. When one is considering only one dimensional flows, due to the divergence
constraint, the scaling of the velocities in (5.7) can be rewritten as uL = u0 and uR =
u0 +O(M). In this case, πC = p0 +O(M2) and therefore the scheme reflects the asymptotic
behavior. The problem of low Mach number approximations originates therefore only from
multidimensional considerations.

It is shown that the standard version of the Suliciu relaxation is not suited for approx-
imating low Mach number flows. However, it turns out that the main problem is in the
scaling of the intermediate relaxation pressure πC . Since this relaxation technique relies on
controlling a relaxation pressure, it seems natural to search for a different control of the
relaxation pressure in order to achieve the asymptotic behavior of the intermediate states.
In fact, this is the basis to derive the low diffusion relaxation scheme in the next section.

5.2 An All Mach Number Relaxation Model

To cure the deficiencies of the model presented in section 5.1, a different relaxation model is
proposed, capable to accurately capture low Mach number flows. In the the spirit of [95] the
pressure is split into a pressure for the slow dynamics and one for the fast acoustics. The
pressure term in the momentum equations can be rewritten as follows

p

M2
= p+

1−M2

M2
p. (5.10)

Now the idea is to introduce two different relaxation pressures for the right hand side of
(5.10) as
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p+
1−M2

M2
p = π +

1−M2

M2
ψ. (5.11)

In the spirit of the standard Suliciu relaxation, the evolution equations for the relaxation
pressures are derived as

πt + uπx +
c2

ρ
ux =

1

ε
(p− π), (5.12)

ψt + uψx +
c2

ρ
ux =

1

ε
(p− ψ). (5.13)

In order to complete the fast acoustics, an additional relaxation process has to be intro-
duced for the velocity u, where this is then coupled with the fast acoustic pressure ψ. To
this end, the following set of equations is suggested

ūt + uūx +
ψx
ρM4

=
1

ε
(u− ū), (5.14)

ψt + uψx +
c2

ρ
ūx =

1

ε
(p− ψ), (5.15)

which gives rise to the following system

ρt
(ρu)t
(ρv)t
Et

(ρπ)t
(ρψ)t
(ρū)t

+
+
+
+
+
+
+

(ρu)x
(ρu2 + π + 1−M2

M2 ψ)x
(ρvu)x

(u(E +M2π + (1−M2)ψ)x
(ρuπ + c2u)x
(ρuψ + c2ū)x

(ρuū+ 1
M4ψ)x

=
=
=
=
=
=
=

0
0
0
0

ρ
ε (p− π)
ρ
ε (p− ψ)
ρ
ε (u− ū)

. (5.16)

To make the scheme adaptive to local flow properties, it is decided to make the splitting
of the pressures described in (5.11) dependent on the local Mach number. So, from now
on, it is distinguished between a reference Mach number Mref , which is used to rescale the
dependent and independent variables, and a local Mach number Mloc, which is derived from
the local flow properties. Therefore, the following splitting of the pressure is suggested

p

M2
ref

=
M2
loc

M2
ref

p+
1−M2

loc

M2
ref

p =
M2
loc

M2
ref

π +
1−M2

loc

M2
ref

ψ, (5.17)

and the evolution for the relaxed velocity ū is modified to give

ūt + uūx +
ψx

ρM2
locM

2
ref

=
1

ε
(u− ū). (5.18)

In total, the following relaxation system is now concerned
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ρt + (ρu)x = 0

(ρu)t + (ρu2 +
M2
loc

M2
ref
π +

1−M2
loc

M2
ref

ψ)x = 0

(ρv)t + (ρvu)x = 0
Et + (u(E +M2

locπ + (1−M2
loc)ψ)x = 0

(ρπ)t + (ρuπ + c2u)x = ρ
ε (p− π)

(ρψ)t + (ρuψ + c2ū)x = ρ
ε (p− ψ)

(ρū)t + (ρuū+ 1
M2
locM

2
ref
ψ)x = ρ

ε (u− ū),

(5.19)

where E = ρe + Mref
u2+v2

2 . Next the robustness, stability and consistency properties of
the new relaxation methods are discussed.

5.2.1 Robustness, Stability and Consistency of the Low Mach Number
Relaxation Approach

Lemma 5.2.1. If the relaxation constant c satisfies the subcharacteristic condition c2 > ρ2p′,
then, to first order of the relaxation parameter ε, the relaxation system (5.19) is a stable
diffusive approximation of system (5.1).

Proof. A stability analysis of the relaxation system by using the Chapman-Enskog analysis
as described in section 1.2.2 is performed. From the last 3 equations of system (5.19) there
is in terms of π, ψ, ū

π = p− ε(πt + uπx +
c2

ρ
ux),

ψ = p− ε(ψt + uψx +
c2

ρ
ux),

ū = u− ε(ūt + uūx +
1

ρM2
locM

2
ref

ψx).

The relaxation variables are expanded in terms of the relaxation parameter ε in the follow-
ing way

π = π0 + επ1 + h.o.t., ψ = ψ0 + εψ1 + h.o.t., ū = ū0 + εū1 + h.o.t.,

where the equilibrium condition reads

π0 = p, ψ0 = p, ū0 = u.

To first order of the relaxation parameter ε there is
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π = p− ε(pt + upx +
c2

ρ
ux),

ψ = p− ε(pt + upx +
c2

ρ
ux),

ū = u− ε(ut + uux +
c2

ρM2
locM

2
ref

px)).

Given that ∂p
∂ρ |s=const= p′, then, from conservation of mass and momentum, there is

pt + upx = −ρp′ux,

ut + uux = − px
ρM2

ref

,

and the following first order approximations to the relaxation variables hold

π = p− ε((c
2

ρ
− ρp′)ux),

ψ = p− ε((c
2

ρ
− ρp′)ux),

ū = u− ε(( 1

M2
loc

− 1)
px

ρM2
ref

).

Now, use these expressions in the momentum and energy equation to get

(ρu)t+(ρu2 +
p

M2
ref

)x = ε

(
1

ρM2
ref

(c2 − ρ2p′)ux

)
x

,

Et+(u(E + p))x = ε

(
1

ρ
(c2 − ρ2p′)(

u2

2
)x

)
x

,

and therefore for stability the following subcharacteristic condition has to hold

c2 > ρ2p′.

Remark 5.2.1. In the proof of the stability of the relaxation system, the evolution equation
for ū drops out, since ū is not directly present in the fluxes for the conserved variables. This
might seem strange, since from the Chapman Enskog expansion, the evolution for ū is not
restricted. However, consider the system

123



5.2 An All Mach Number Relaxation Model

ρt + (ρu)x = 0

(ρu)t + (ρu2 +
M2
loc

M2
ref
π +

1−M2
loc

M2
ref

ψ1+ψ2

2 )x = 0

(ρv)t + (ρvu)x = 0

Et + (u(E +M2
locπ + (1−M2

loc)
ψ1+ψ2

2 )x = 0
(ρπ)t + (ρuπ + c2u)x = ρ

ε (p− π)

(ρψ1)t + (ρuψ1 + c2

MlocMref
ψ1)x = ρ

ε (p+ cMlocMrefu− ψ1)

(ρψ2)t + (ρuψ2 − c2

MlocMref
ψ2)x = ρ

ε (p− cMlocMrefu− ψ2)

. (5.20)

A straightforward computation shows that the approximate Riemann solver defined by
(5.20) is equivalent to the approximate Riemann solver from (5.19) and the alternative sys-
tem (5.20) admits the same subcharacteristic condition from the Chapman Enskog analysis,
see Appendix A. The choice of the system 5.19 to use for the numerical fluxes is, that it is
a little bit easier to handle in the code and also easier to extend to the case, when there is a
gravitational source term present, see chapter 6.

To set up the numerical scheme, the solution to the Riemann problem at the cell interface
is needed. This is concerned by lemma 5.2.2.

Lemma 5.2.2. The relaxation system (5.19) is hyperbolic and fully linear degenerate with
eigenvalues λ±s = u± cMloc

ρMref
, λ±f = u± c

ρMlocMref
and λc = u, where λc has multiplicity 3.

Moreover, the solution to the Riemann problem is composed of 6 constant states separated
by 5 contact discontinuities as in the following way

WR(
x

t
;WL,WR) =



WL if x
t < λ−f ,

WL∗ if λ−f <
x
t < λ−s ,

WCL if λ−s <
x
t < λc,

WCR if λc <
x
t < λ+s ,

WL∗ if λ+s <
x
t < λ+f ,

WR if x
t > λ+f .

(5.21)

The solution to the states W can be derived explicitly and is given as follows
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xi+ 1
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xi+1xi

λ−f λc λ+fλ−s λ+s

WRWL

WCR WR∗WL∗ WCL

Fig. 5.2: Solution structure to the Riemann problem for the system (5.19)

ψC =
ψL + ψR

2
+ cMlocMref

ūL − ūR
2

ūC =
ūL + ūR

2
+

ψL − ψR
2cMlocMref

,

πL∗ = πL +
M2
loc(ψC − ψL)

1 +M2
loc

πR∗ = πR +
M2
loc(ψC − ψR)

1 +M2
loc

,

uL∗ = uL −
Mloc(ψC − ψL)

cM2
ref (1 +M2

loc)
uR∗ = uR +

Mloc(ψC − ψR)

cM2
ref (1 +M2

loc)
,

πC =
πL∗ + πR∗

2
+
cMref

Mloc

(uL∗ − uR∗)

2
uC =

uL∗ + uR∗

2
+

Mloc

cMref

πL∗ − πR∗

2
,

τL∗ = τL +
πL − πL∗

c2
τR∗ = τR +

πR − πR∗

c2
,

τCL = τL +
πL − πC

c2
τCR = τR +

πR − πC
c2

,

eL∗ = eL −
M2
loc

2c2
(π2
L − π2

L∗ +
1−M2

loc

1 +M2
loc

(ψ2
L − ψ2

C)),

eR∗ = eR −
M2
loc

2c2
(π2
R − π2

R∗ +
1−M2

loc

1 +M2
loc

(ψ2
R − ψ2

C)),

eCL = eL∗ − πL∗
M2
locπL∗ + 2(1−M2

loc)ψC
2c2

+πC
M2
locπC + 2(1−M2

loc)ψC
2c2

,

eCR = eR∗ − πR∗
M2
locπR∗ + 2(1−M2

loc)ψC
2c2

+πC
M2
locπC + 2(1−M2

loc)ψC
2c2

.

The resulting wave structure is also depicted in figure 5.2.

Proof. The computation of the eigenvalues is straightforward and omitted for brevity. Now,
investigate the Riemann Invariants to the respective fields. Compute the eigenvectors in the
primitive variables V = {ρ, u, v, e, π, ψ, ū} to find for each eigenvalue
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• λc: The eigenvectors read



1
0
0
0
0
0
0


,



0
0
1
0
0
0
0


,



0
0
0
0
1
0
0


, and the Riemann Invariants are

Φc = {u, π, ψ, ū}.

• λ±s = u± cMloc
ρMref

: The eigenvectors read



ρ2

± cMloc
Mref

0
c2

M2
locπ + (1−M2

loc)ψ
0
0


, and the Riemann

Invariants are
Φ±s = {u± cMloc

ρMref
, π ∓ cMref

Mloc
u, e− πM

2
locπ+2(1−M2

loc)ψ

2c2
, v, ψ, ū}.

• λ±f The eigenvector read



ρ2

± c
MrefMloc

0
c2

M2
locπ + (1−M2

loc)ψ
±c(1+M2

loc)

M3
locMref

c2(1+M2
loc)

M2
loc


. Therefore the Riemann Invari-

ants are Φ±f = {π+ c2

ρ , ψ−
1+M2

loc

M2
loc

π, ψ∓cMref (1+Mloc)
2

Mloc
u, ψ∓cMlocMref ū, e−

Mloc2

2c2
(π2+

1−M2
loc

1+M2
loc
ψ2), v}.

The solutions to the intermediate states can be achieved by using the Riemann Invariants
and solving the resulting linear system of equations. Moreover, the linear degeneracy of
the eigenvalues follows from the fact that all eigenvalues are Riemann invariants for their
respective fields.

Now, the robustness of the new relaxation approach is concerned.

Theorem 5.2.1. [Robustness] Let WL and WR be given in Ωphys.

For Mloc < 1, Mref /∈
[

M2
loc

2+M2
loc+
√

1−M4
loc

,
M2
loc

2+M2
loc−
√

1−M4
loc

]
and choosing c > 0 large enough,

the states W as defined in Theorem 5.2.2 also belong to the set Ωphys.

Proof. The positivity of the density follows from the ordering of the eigenvalues. Consider
first the ordering of the centered eigenvalues

uC − c
Mloc

Mref
τCL < uC < uC + c

Mloc

Mref
τCR .

By subtraction of uC there is
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−c Mloc

Mref
τCL < 0 < c

Mloc

Mref
τCR ,

and so for c > 0, there is τCL , τCR > 0. Second, consider the ordering of the left eigenvalues
as given by

uL∗ − c 1

MlocMref
τL∗ < uL∗ − c Mloc

Mref
τL∗ . (5.22)

Again, by subtracting uL∗ and some further manipulation there is

τL∗(1−M2
loc) > 0. (5.23)

For Mloc < 1 there is τL∗ > 0. By symmetry, the same holds true for τR∗. For proving
the positivity of the internal energies, first take a look at the respective formulas for the left
states

eL∗ = eL −
M2
loc

2c2
(π2
L − π2

L∗ +
1−M2

loc

1 +M2
loc

(ψ2
L − ψ2

C)),

eCL = eL∗ − πL∗
M2
locπL∗ + 2(1−M2

loc)ψC
2c2

+ πC
M2
locπC + 2(1−M2

loc)ψC
2c2

.

(5.24)

Since eL > 0, the positivity of eL∗ and eCL is ensured by choosing c large enough. In order
to show that, it is convenient to rewrite πL∗ , πC and ψC in terms of c and rewrite for better
readability. From Lemma 5.2.2 there is

πL∗ = c
M3
locMref

1 +M2
loc

(uL − uR)

2
+ l.o.t. = cθ1

(uL − uR)

2
+ l.o.t.,

πC = c
Mref (1 +M2

loc +M4
loc)−M2

loc

Mloc(1 +M2
loc)

(uL − uR)

2
+ l.o.t. = cθ2

(uL − uR)

2
+ l.o.t.,

ψC = cMrefMloc
(uL − uR)

2
+ l.o.t. = cθ3

(uL − uR)

2
+ l.o.t..

(5.25)

First, use (5.25) in (5.24) for eL∗ to get

eL∗ = eL +M2
loc(θ

2
1 +

1−M2
loc

1 +M2
loc

θ2
2)︸ ︷︷ ︸

=θ4

(uL − uR)2

8
+O(

1

c
).

For Mloc < 1 there is θ4 > 0 and choosing c large enough gives eL∗ > 0. Further use (5.25)
in (5.24) for eCL to get
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eLC = eL +

(
M2
loc

1−M2
loc

1 +M2
loc

θ2
3 +M2

locθ
2
2 − 2(1−M2

loc)θ3(θ1 − θ2)

)
︸ ︷︷ ︸

:=f(Mloc,Mref )

(uL − uR)2

8
+O(

1

c
).

The sign of f(Mloc,Mref ) is not obvious. First, substitute the definitions for θi and sim-
plify to get

f(Mloc,Mref ) =
(3 + 4M2

loc + 2M4
loc)M

2
ref −Mref (4M2

loc + 2M4
loc) +M4

loc

(1 +M2
loc)

2
.

Since the denominator is always positive, it is sufficient to consider the numerator as given
in the following function

f̄(Mloc,Mref ) = (3 + 4M2
loc + 2M4

loc)M
2
ref −Mref (4M2

loc + 2M4
loc) +M4

loc.

The function f̄ is a convex second order polynomial in Mref . Therefore, one can compute
the zeros with respect to Mref to get

Mref,1,2 =
M2
loc

2 +M2
loc ±

√
1−M4

loc

, (5.26)

which shows the desired result.

Remark 5.2.2. The restriction on the choice of the parameter refers to states, where
Mloc > Mref . To see this, take the larger root from (5.26) and compute

M2

2 +M2 −
√

1−M4
−M =

M(M − 2−M2 +
√

1−M4)

2(2 +M2 −
√

1−M4)
< 0,

for 0 ≤M ≤ 1.

Remark 5.2.3. Theorem 5.2.1 together with Theorem 2.2.1 ensures that, if a time explicit
time discretization is chosen, the numerical scheme based on the relaxation system 5.19 is
robust, i.e. the numerical approximations are all in Ωphys. However, for efficiency reasons,
an implicit time discretizations has to be chosen. A robustness result for this case is out of
the scope of this work.

Now the limit behavior Mloc → 1 of the system (5.19) is considered. Even though when
Mloc tends to one forMloc > Mref , there is a region where the positivity of the internal energy
can not be ensured, the consistency of the new proposed relaxation procedure with respect
to the standard Suliciu relaxation system is of interest. The standard Suliciu relaxation
system is known to perform reasonable well around shocks. This property should translate
to the new relaxation scheme.

Theorem 5.2.2. (Consistency) For Mloc → 1, the numerical scheme based on the system
(5.19) goes to the numerical scheme based on the system (5.6).
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Proof. When Mloc → 1, the last two equations in (5.19) do not have any influence one the
rest of the system. The upper part of the system (5.19) in turn is identical to the standard
relaxation system (5.6).

5.2.2 Low Mach Number Properties of the New Relaxation Scheme

In this section, the low Mach properties of the scheme derived from the relaxation system
(5.19) shall be discussed. Three properties of the low Mach behavior are investigated. The
scaling of the intermediate states, the diffusion and the asymptotic preserving property.

First, the scaling of the the intermediate states in the solution of the Riemann problem is
discussed. In the following, it is assumed that

∀k∈N O(Mk
ref ) = O(Mk

loc) = O(Mk). (5.27)

With the formulas for the intermediate states given in Lemma 5.2.2, it is straightforward
to give the following results for the scaling of the intermediate states

πL∗ = p0 +O(M4) πR∗ = p0 +O(M4),

πC = p0 +O(1) ψC = p0 +O(M2).

This seems at a first glance like a step back, because the pressure πC now scales with
O(1), whereas in the standard relaxation πC scales with O(M). However, consider the now
modified momentum equation

(ρu)t + (ρu2 +O(1)π +O(M−2)ψ)x = 0.

Since π now gets multiplied by a factor of O(1), the scaling of πC is consistent with the
scaling given in (5.3) and therefore, if WL and WR are given in ΩAP , then

W ∈ ΩAP . (5.28)

Next, the diffusion of the upwind scheme is discussed. Similar to section 5.1, the diffusion
vector is computed as the difference from the central flux and the interface flux.

D =
f(uL) + f(uR)

2
− f∗. (5.29)

To compute the scaling of the interface flux, it is also necessary to specify the scaling of
the other dependent variables. It is straightforward to show that

uL∗ = u0 +O(M2), uR∗ = u0 +O(M2),

τL∗ = τ0 +O(M), τR∗ = τ0 +O(M),

τCL = τ0 +O(M2), τCR = τ0 +O(M2),

πC = p0 +O(1), uC = u0 +O(1).

Plugging these into the numerical flux function gives
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
(ρu)∗

(ρu2 +
M2
loc

M2
ref
π +

1−M2
ref

M2
loc

ψ)∗

(ρuv)∗

(u(E +M2
locπ + (1−M2

loc)ψ)∗

 =


ρ0u0 +O(1)

ρ0u
2
0 + p0

M2 +O(1)
ρ0u0v0 +O(1)

(u0(E0 + p0)) +O(1)

 .

Therefore the scaling of the diffusion vector reads

D =


O(1)
O(1)
O(1)
O(1)

 .

This analysis shows in particular, that the diffusion of the scheme is independent of the
Mach number.

Lastly for this section, the asymptotic preserving property of the scheme is discussed.
To analyze the behavior of the scheme in the limit of M → 0, consider now the full 2D -
scheme as defined in section 2.5. Start by considering the equation for the momentum in
the direction x1

(ρu)n+1
i,j = (ρu)ni,j +

∆t

∆x

(
F ρu1,i−1/2,j − F

ρu
1,i+1/2,j + F ρu2,i,j−1/2 − F

ρu
2,i,j+1/2

)
, (5.30)

where

F ρu1,i±1/2,j = (ρu2)i±1/2,j + πi±1/2,j +
1−M2

M2
ψi±1/2,j ,

F ρu2,i,j±1/2 = (ρuv)i,j±1/2.

Multiply (5.30) with M2 to get

M2
(

(ρu)n+1
i,j − (ρu)ni,j

)
=

M2 ∆t

∆x

(
(ρu2)i−1/2,j + πi−1/2,j − (ρu2)i−1/2,j − πi−1/2,j + (ρuv)i,j−1/2 − (ρuv)i,j+1/2

)
(1−M2)

∆t

∆x

(
ψi−1/2,j − ψi+1/2,j

)
.

(5.31)

By Lemma 5.2.2 it holds true that ρ, u, π and ψ are bounded in M . It is assumed that
the discrete time derivative is also bounded in M . Therefore, in the limit M → 0, there is

0 = ψi−1/2,j − ψi+1/2,j .

With the definition of ψC there is
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ψi−1/2,j =
pi−1,j + pi,j

2
, (5.32)

and therefore the following relations can be derived for the pressure

pi+1,j = pi−1,j . (5.33)

From symmetry, a similar result from the equation for the y momentum can be derived

pi,j+1 = pi,j−1. (5.34)

To analyze the divergence constraint on the velocity field, consider the Energy equation

En+1
i,j = Eni,j +

∆t

∆x
((u(E +M2π + (1−M2)ψ))i−1/2,j − (u(E +M2π + (1−M2)ψ))i+1/2,j

+ (v(E +M2π + (1−M2)ψ))i,j−1/2 − (v(E +M2π + (1−M2)ψ))i,j+1/2).

In this model there is E = ρe+M2 u2+v2

2 . Therefore, when the low Mach number limit is
considered, there is E = (ρe). Hence, it is beneficial to derive the limit of ρe in the states
L∗, R∗, CL, CR.

eR∗ = eR −
M2

2c2
(π2
R +

1−M2

1 +M2
ψ2
R) +

M2

2c2
(π2
R∗ +

1−M2

1 +M2
ψ2
C), (5.35)

eL∗ = eL −
M2

2c2
(π2
L +

1−M2

1 +M2
ψ2
L) +

M2

2c2
(π2
L∗ +

1−M2

1 +M2
ψ2
C). (5.36)

From the formulas given in Lemma 5.2.2 it is straightforward to see that πL∗ , πR∗ and ψC
are bounded in M , so that in the low Mach number limit there is

eR∗ = eR eL∗ = eL. (5.37)

For the states in the center consider the following formulas

eCR = eR∗ − πR∗
M2
locπR∗ + 2(1−M2

loc)ψC
2c2

+ πC
M2
locπC + 2(1−M2

loc)ψC
2c2

, (5.38)

eCL = eL∗ − πL∗
M2
locπL∗ + 2(1−M2

loc)ψC
2c2

+ πC
M2
locπC + 2(1−M2

loc)ψC
2c2

. (5.39)

In order to take the limit, one has to check first the limit behavior of πC . Following Lemma
5.2.2, πC is defined as

πC =
πL∗ + πR∗

2
+ c

(uL∗ − uR∗)

2
. (5.40)

It is straightforward to see that limM→0 πR∗,L∗ → πR,L. Regarding the terms uL∗,R∗ , it is
useful to write them in terms of the initial conditions to have

131



5.2 An All Mach Number Relaxation Model

uL∗ = uL −
1

cM(1 +M2)
(
pR − pL

2
+ cM2uL − uR

2
), (5.41)

uR∗ = uR −
1

cM(1 +M2)
(
pL − pR

2
+ cM2uL − uR

2
). (5.42)

The initial conditions are in the set ΩAP . Therefore, there is pL − pR = O(M2) and
uL − uR = O(1). So in the limit there is uL∗,R∗ = uL,R and therefore in total it holds

lim
M→0

πC = p0 + c
(uL − uR)

2
. (5.43)

Similar, the limit limM→0 ψC = p0 is computed. The limit for the internal energies
eCL , eCR reads then

eCR = eR −
p0(p0 + cuL−uR2 )

c2
eCL = eL −

p0(p0 + cuL−uR2 )

c2
. (5.44)

The same computation is performed for the inverse mass fractions. Rearranging the for-
mulas given in Lemma 5.2.2 gives

τCL = τL +
1 +M4

1 +M2

uR − uL
2c

+
πL − πR

2c2
τCR = τR +

1 +M4

1 +M2

uR − uL
2c

+
πR − πL

2c2
.

When taking the limit of M → 0 and using pL − pR = O(M2) it holds

τCL = τL +
uR − uL

2c
τCR = τR +

uR − uL
2c

,

so the density reads

ρCL = ρL
2c

2c+ ρL(uR − uL)
ρCR = ρR

2c

2c+ ρR(uR − uL)
.

Therefore, by using (ρe)L,R =
πL,R
γ−1 , the energy in the low Mach number limit is computed

to be

ρCLeCL = ρLeL
2c

2c+ ρL(uR − uL)
(1−

p0(p0 + cuL−uR2 )

c2eL
),

ρCReCR = ρReR
2c

2c+ ρR(uR − uL)
(1−

p0(p0 + cuL−uR2 )

c2eR
).
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Now define the following quantities

Hi± 1
2
,j = (ρe)∗

i± 1
2
,j

+ ψ∗
i± 1

2
,j
,

Hi,j± 1
2

= (ρe)∗
i,j± 1

2

+ ψ∗
i,j± 1

2

,

and rewrite the energy equation in the low Mach number limit in the following way

πn+1
i,j

γ − 1
=

πni,j
γ − 1

+
∆t

∆x
(
ui−1,j + ui,j

2
Hi− 1

2
,j −

ui,j + ui+1,j

2
Hi+ 1

2
,j

+
vi,j−1 + vi,j

2
Hi,j− 1

2
− vi,j + vi,j+1

2
Hi,j+ 1

2
).

Under the assumption that
πn+1
i,j

γ−1 =
πni,j
γ−1 and some further manipulation, it holds that there

is

(ui+1,j − ui−1,j) + (vi,j+1 − vi,j−1) = ui,j(Hi− 1
2
,j −Hi+ 1

2
,j) + vi,j(Hi,j− 1

2
−Hi,j+ 1

2
)

+ ui−1,j(1−Hi− 1
2
,j) + ui+1,j(1−Hi+ 1

2
,j) + vi,j−1(1−Hi,j− 1

2
) + vi,j+1(1−Hi,j+ 1

2
).

Assuming sufficient regularity, the respective quantities can be approximated by a Taylor
expansion. After some long calculations it can be shown that

ui+1,j − ui−1,j

2∆x
+
vi,j+1 − vi,j−1

∆x
= O(∆2

x). (5.45)

The following theorem combines all the results derived in this section.

Theorem 5.2.3 (Low Mach Properties). The numerical scheme defined based on the relax-
ation system (5.19) is asymptotic preserving for M → 0, if WL and WR are given in Ωphys,
the states WL∗ ,WR∗ ,WCL ,WCR all belong to the set ΩAP and the diffusion is independent
of the Mach number.

5.3 Numerical results

Now, the proposed low Mach number scheme is tested for its practical applicability. In all
test cases, an ideal gas law is used with γ = 5

3 . Also in every test an equidistant grid is
used. The emphasis in these tests lies in the comparison of the new relaxation scheme with
respect to the standard Suliciu relaxation scheme. From the Theorem 5.2.2 it is clear that
the standard scheme is recovered when choosing Mloc = 1. This scheme is denoted in the
following with S1, while the new relaxation scheme is denoted by S2.

5.3.1 SOD Shock Tube test

The first test case investigates the capability of the low Mach number scheme to deal with
discontinuities. To this end, the Sod shock tube test is concerned, see [155]. The computa-
tional domain is D = [0, 1] and the initial conditions are set as
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Fig. 5.3: Numerical approximations to the SOD shock tube test for the schemes S1 and S2
at different Mach numbers and at different resolutions at time 0.2. Top left: Mref = 10−1.
Top right: Mref = 10−2. Bottom center: Mref = 10−3

ρ(x) =

{
1.0 if x < 0.5,

0.125 if x > 0.5,
(5.46)

and

p(x) =

{
1.0 if x < 0.5,

0.1 if x > 0.5.
(5.47)

and the velocity is set to zero. Only first order versions of the schemes S1 and S2 are
concerned in order to investigate the influence of the numerical flux function on the approx-
imation. Moreover, in this test case an explicit time integration is performed. In order to
perform an explicit time integration for the scheme S2, the local Mach number has to be con-
trolled in order for the fast eigenvalues, that scale with O( 1

Mloc
), to be bounded. Therefore

in the scheme S2 it is set Mref = Mloc. The results are shown in figure 5.3.

When looking at the numerical approximations with 100 cells and comparing them with
the solutions on higher resolutions, a similar behavior on all the different Mach numbers can
be observed. At first, the low Mach number scheme seems to be more diffusive on the shock
around 0.9. Both schemes show a comparable performance on the contact discontinuity at
0.6, while the rarefaction wave is much better captured by the low Mach number scheme.
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Moreover, both schemes are in good agreement in all regimes when the resolution is increased.
However, a slight discrepancy is observed at the left side of the rarefaction wave, where the
low Mach number scheme shows a sharper resolution.

5.3.2 Gresho Vortex test

As has been mentioned in section 5.1, the problems with low Mach number flow only emerge
when multidimensional problems are concerned. A classical test case for low Mach number
properties is the Gresho vortex. The Gresho vortex is an axisymmetric steady state solution
of the compressible Euler equations. Here the modified version from [132] is considered.
It is defined in polar coordinates and, since the solution is axisymmetric, only the radial
component is specified. Denoting by uφ the angular velocity, it is set as

uφ(r) =


5r if 0 ≤ r ≤ 0.2,

2− 5r if 0.2 ≤ r ≤ 0.4,

0 if 0.4 ≤ r,
(5.48)

and the pressure distribution is given by

p(r) = p0 +


25
2 r

2 if 0 ≤ r ≤ 0.2,
25
2 r

2 + 4(1− 5r − ln 0.2 + ln r) if 0.2 ≤ r ≤ 0.4,

4 ln 2− 2 if 0.4 ≤ r,
(5.49)

where p0 = ρ
γM2

ref
. The density ρ is considered as constant and the computational domain

is D = [−1, 1] × [−1, 1]. Holding ρ and γ fixed, the reference Mach number Mref is used
to scale the vortex to different regimes. The respective schemes are implemented in the
SLH code, where the implicit time integration method ESDIRK34 from [92] is used. In
order to ensure a suitable convergence behavior for the Newton iteration the slopes are not
limited as suggested in section 2.3.1, but are chosen as differentiable functions from the cell
centered values from neighboring cells, see also [131]. The simulations are performed on
an equidistant grid in both spatial dimensions with Nx = Ny = 40 and periodic boundary
conditions are imposed. This resolution seems rather low. However, as it has been shown in
the well-balanced tests, increasing the resolution will increase the quality of the numerical
approximation. It is desired to see how the schemes perform on a not favorable low resolution.
The resulting distributions of the relative Mach number, i.e. Mrel(t, x, y) = Mloc(t,x,y)

Mloc(0,x,y) , after
one rotation for different reference Mach numbers are shown in figure 5.4.

The scheme S1 introduces an increasing amount of diffusion with decreasing Mach number;
as can be seen in the left row of figure 5.4. In contrast to that, the new relaxation scheme
S2 preserves the vortex structure on all Mach numbers equally good. This result is expected
form the derivations of the numerical diffusion of the upwind schemes. The scheme S1 was
shown to introduce a diffusion that scales with O( 1

Mref
) in the momentum equations, while

the diffusion for the scheme S2 is shown to be independent of the Mach number.

Another criterium to check the quality of the numerical approximation is the kinetic
energy. Since the vortex is a stationary solution, the kinetic energy also remains constant in
the exact solution. The evolution of the total kinetic energy in the computational domain
is shown in figure 5.5.

The scheme S1 shows an increasing diffusion of the kinetic energy by decreasing Mach
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Fig. 5.4: Local relative Mach number for the Gresho Vortex after one rotation. Left: results
for the scheme S1. Right: results for the scheme S2. From top to bottom the reference
Mach numbers Mref = 10−2, Mref = 10−3 and Mref = 10−4 are chosen to set up the initial
condition.
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Fig. 5.5: Evolution of the total kinetic energies in the numerical approximation of the
Gresho vortex at different Mach numbers for different schemes. Shown is the relative total
kinetic energy, i.e. tKE(t)

tKE(0) . Left: With the scheme S1 at Mref = 10−4. Right: Without the

scheme S1 at Mref = 10−4.

number. Even more, for Mach number 10−4, the scheme actually shows also convergence
problems and the solution becomes unphysical. On the other, hand the scheme S2 shows
only a small diffusion of the kinetic energy. Moreover, the evolution of the total relative
kinetic energy is almost identical at the different Mach numbers.

5.3.3 Kelvin Helmholtz Instability

The last test case concerns the approximation of a Kelvin-Helmholtz instability. The setup
is taken also from [132]. The idea is to introduce a non steady flow problem to further
investigate the influence of the numerical diffusion on the quality of the numerical approxi-
mations. The Kelvin-Helmholtz instability is a shear instability, where two flow regimes are
considered, that are separated by a sharp discontinuity. The flow velocity is parallel to the
shear discontinuity, but in opposite direction on either side. For the Euler equations, this
is actually a steady solution. However, in numerical applications, due to numerical insta-
bilities, the shear instability is triggered and a complex dynamic behavior of the numerical
approximation occurs. However, the triggering of the shear instability due to numerical
errors is not beneficial for comparing numerical solutions for different schemes, since these
errors are random. Instead, a modification of the classical setup is suggested, such that at
first only a specific mode of the instability is excited. This gives the possibility to compare
the results for different schemes. Therefore the initial conditions are set as

ρ =


ρ1 − ρm exp(y−0.25

L ) if 0 ≤ y ≤ 0.25,

ρ2 + ρm exp(−y+0.25
L ) if 0.25 ≤ y ≤ 0.5,

ρ2 + ρm exp(y−0.75
L ) if 0.5 ≤ y ≤ 0.75,

ρ1 − ρm exp(−y+0.75
L ) if 0.75 ≤ y ≤ 1.

(5.50)
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u =


u1 − um exp(y−0.25

L ) if 0 ≤ y ≤ 0.25,

u2 + um exp(−y+0.25
L ) if 0.25 ≤ y ≤ 0.5,

u2 + um exp(y−0.75
L ) if 0.5 ≤ y ≤ 0.75,

u1 − um exp(−y+0.75
L ) if 0.75 ≤ y ≤ 1.

(5.51)

and p = 2.5. The parameters are

ρ1 = 1.0, ρ2 = 2.0, ρm =
ρ1 − ρ2

2
,

u1 = 1.0, u2 = 2.0, um =
ρ1 − ρ2

2
,

(5.52)

and L = 0.025. The computational domain is D = [0, 1] × [0, 1] and periodic boundary
conditions are imposed. The instability is triggered by a perturbation in the vertical velocity
as

v = 10−2 sin(2πx), (5.53)

and the simulations are performed with a Mach number of Mref = 10−2. The results are
depicted in figure 5.6.

Again the scheme S2 shows a better resolution of the resulting instabilities. Moreover,
the scheme S1 showed again convergence problems in the Newton iteration and therefore
the instability got triggered at a later time.
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Fig. 5.6: Kelvin-Helmholtz Instability computed with the schemes S1 and S2 on a 128×128
grid. Left: Scheme S1. Right: Scheme S2. Top: Density. Bottom: Mach number.
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6 A Low Diffusion scheme for the Euler
Equations with Gravity

This chapter concerns the numerical approximations of the Euler equations with gravity in
the low Mach number flow regime. The equations are discussed in section 1.4 and are given
as 

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + I p
M2 ) = − ρ

Fr2∇Φ,

Et +∇ · (u(E + p)) = −ρM2

Fr2 〈u,∇Φ〉,
Φt = 0.

(6.1)

The numerical approximation of low Mach number flow regime for the homogeneous Euler
equations is discussed in chapter 5. It is found there that the control of the scaling of the
variables with respect to the Mach number in the approximate Riemann solver is crucial
in order to develop a low diffusive scheme when low Mach number flows are considered.
Now, due to the gravitational source term, also the Froude number is influencing the flow.
As it is discussed in section 1.4, the limit behavior of the system (6.1) strongly depends
on the relative behavior of the Froude and the Mach number. It is found that if and only
if O(M) = O(Fr) in the limit of M → 0, the system (6.1) approaches the hydrostatic
equilibrium. Atmospheres usually are close to a hydrostatic equilibrium and therefore in the
following, when the scalings of the two different non-dimensional variables are considered,
the case of

O(M) = O(Fr) (6.2)

is assumed.

This gives rise to two challenges in the numerical approximation of (6.1) in the low Mach
number regime. First, the accurate resolution of the hydrostatic equilibrium, as this is the
limit behavior of the system. Second, controlling the diffusion in the low Mach number
regime.

The accurate approximation of atmospheres is discussed in chapter 4, where a well-
balanced approximate Riemann solver is developed. The approximations of low Mach num-
ber flows are considered in chapter 5, where an asymptotic preserving approximate Riemann
solver is developed. In both cases, the Suliciu relaxation technique is used and adapted
to the respective challenges. Therefore in this section, the techniques form chapter 4 and
chapter 5 are combined to tackle the challenges in the approximation of solutions to (6.1) in
the low Mach number flow regime, when the scaling (6.2) is assumed.
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6.1 Derivation of the Relaxation System

Consider the relaxation system (5.19) developed for low Mach number flows and extend
it with the gravitational source term from the system (6.1) to get the following relaxation
system.

ρt + (ρu)x = 0

(ρu)t + (ρu2 +
M2
loc

M2
ref
π +

1−M2
loc

M2
ref

ψ)x = − ρ
Fr2 Φx

(ρv)t + (ρvu)x = 0

Et + (u(E +M2
locπ + (1−M2

loc)ψ)x = −M2
ref

Fr2 ρuΦx

(ρπ)t + (ρuπ + c2u)x = ρ
ε (p− π)

(ρψ)t + (ρuψ + c2ū)x = ρ
ε (p− ψ)

(ρū)t + (ρuū+ 1
M2
locM

2
ref
ψ)x = ρ

ε (u− ū)

, (6.3)

where E = ρe + Mref
u2+v2

2 . In a first step, analogous to chapter 4, in order to derive a
practical well-balanced scheme, a relaxation on the gravitational source term is introduced
as follows

ρt + (ρu)x = 0

(ρu)t + (ρu2 +
M2
loc

M2
ref
π +

1−M2
loc

M2
ref

ψ)x = −ρ(ρ−,ρ+)
Fr2 Zx

(ρv)t + (ρvu)x = 0

Et + (u(E +M2
locπ + (1−M2

loc)ψ)x = −M2
ref

Fr2 ρ(ρ−, ρ+)uZx
(ρπ)t + (ρuπ + c2u)x = ρ

ε (p− π)
(ρψ)t + (ρuψ + c2ū)x = ρ

ε (p− ψ)
(ρū)t + (ρuū+ 1

M2
locM

2
ref
ψ)x = ρ

ε (u− ū)

Zt + uZx = 1
ε (Φ− Z)

ρ−t + (u− c2

ρM2
refM

2
loc
− δ)ρ−x = 1

ε (ρ− ρ
−)

ρ+
t + (u+ c2

ρM2
refM

2
loc

+ δ)ρ+
x = 1

ε (ρ− ρ
+)

. (6.4)

The relaxation procedure on the gravitational potential is already explained in chapter
4. There, this additional procedure is shown to lead to a simple solution to the Riemann
problem. However, the solution is not unique, since one Riemann invariant is missing. An
additional equation has to be imposed on the centered wave in order to achieve the well-
balanced property. As it has been shown in [56], the method of imposing this invariant
is equivalent to impose an additional relaxation on the density in the source term. This
procedure is also followed here and reflected by the last two equations of (6.4), where δ > 0
is a parameter that can be chosen artificially small, such that in practice the CFL criterium is
not affected. However, the evolution equations for ρ− and ρ+ are purely theoretical and only
help to justify the quadrature of the density in the source term. For the sake of simplicity,
they are omitted in the following, keeping in mind that they could be added without any
problems in any step.

Now, consider the singularity in the source term, when the Froude number goes to zero.
By assuming the relative scaling (6.2), it is expected that the solutions to the system (6.1)
tend towards the hydrostatic equilibrium given by
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px
M2
ref

= − ρ

Fr2
Φx. (6.5)

However, in the relaxation model (6.3), due to the splitting of the pressure, the following
balance must hold in the equilibrium

M2
loc

M2
ref

πx +
1−M2

loc

M2
ref

ψx = − ρ

Fr2
Φx. (6.6)

It is now proposed to split the singularity in the source term in a similar manner as the
pressure. Consider the following splitting

ρ

Fr2
Φx = (

Fr2
loc

Fr2
ref

ρ+
1− Fr2

loc

Fr2
ref

ρ)Φx. (6.7)

Applying again a relaxation on the gravitational potential and the densities gives the
following relation to hold in hydrostatic equilibrium

M2
loc

M2
ref

πx +
1−M2

loc

M2
ref

ψx = −(
Fr2

loc

Fr2
ref

ρ̄1 +
1− Fr2

loc

Fr2
ref

ρ̄2)Zx. (6.8)

In order to satisfy (6.8) it is decided, to enforce the hydrostatic balance on the terms with
the same scaling of the non-dimensional variables. Therefore the relation (6.8) is split into
two parts, i.e

M2
loc

M2
ref

πx = −
Fr2

loc

Fr2
ref

ρ̄1Zx,

1−M2
loc

M2
ref

ψx = −
1− Fr2

loc

Fr2
ref

ρ̄2Zx.

(6.9)

It is straightforward to see that if the relations (6.9) hold, so does (6.8). Observe that the
density in the source term is also split into two different values. It is not clear at this point
if different quadrature rules have to be used to achieve the balance (6.9).

In order to derive a well-balanced approximate Riemann solver, the designed relaxation
system has to share the same hydrostatic relation than the original equations. In fact, the
relations (6.9) are stronger than the original relation (6.5), while this reformulation is needed
due to the splitting of the pressure in order to control the scaling in the low Mach number
flow regime. However, the relaxation system (6.4) is not in equilibrium when the relations
(6.9) are satisfied. The pressure term in the evolution equation for ρū is not balanced.
Hence, also in the relaxation part for the fast acoustics, the gravitational source term has
to be considered. It is not desired to change the homogeneous part of the relaxation system
since it has been proven beneficial for approximations of the homogeneous equations. So
it is needed to derive how to add the source term to the fast acoustics such that the new
relaxation system admits the hydrostatic relations (6.9). However, a simple reformulation
of the second equation in (6.9) gives
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ψx
M2
locM

2
ref

= −
1− Fr2

loc

1−M2
loc

ρ̄2

Fr2
refM

2
loc

Zx. (6.10)

Therefore, if the system (6.4) is extended by the right hand side of (6.10), it shares the
hydrostatic relations (6.9). Extending the relaxation system (6.4) by the right hand side
of (6.10) and applying the splitting of the source term (6.8) now leads to the following
relaxation system

ρt + (ρu)x = 0

(ρu)t + (ρu2 +
M2
loc

M2
ref
π +

1−M2
loc

M2
ref

ψ)x = −(
Fr2

loc

Fr2
ref
ρ̄1 +

1−Fr2
loc

Fr2
ref

ρ̄2)Zx

(ρv)t + (ρvu)x = 0

Et + (u(E +M2
locπ + (1−M2

loc)ψ)x = −M2
ref

Fr2
ref

(Fr2
locρ̄1 + (1− Fr2

loc)ρ̄2)uZx

(ρπ)t + (ρuπ + c2u)x = ρ
ε (p− π)

(ρψ)t + (ρuψ + c2ū)x = ρ
ε (p− ψ)

(ρū)t + (ρuū+ 1
M2
locM

2
ref
ψ)x = −1−Fr2

loc

1−M2
loc

ρ̄2

Fr2
refM

2
loc
Zx + ρ

ε (u− ū)

Zt + uZx = 1
ε (Φ− Z)

.

(6.11)
Since the system (6.11) admits the hydrostatic relations (6.9), which are consistent with

hydrostatic equilibrium (6.5), it is expected, that the resulting approximate Riemann solver
is well-balanced. However, the well-balanced property is also expected to depend on the
choice of ρ1 and ρ2. To analyze the influence of these quadratures on the approximate
Riemann solver, it is now desired to compute the solution to the Riemann problem.

Lemma 6.1.1. The system (6.11) is hyperbolic. The eigenvalues λ±s = u± M2
loc

M2
ref

c
ρ , λ±f =

u± 1
M2
locMref

c
ρ and λC = u are linear degenerate where λc = u has multiplicity 4.

Proof. The proof is straightforward and left to the reader.

Following Lemma 6.1.1, the approximate Riemann solver defined by the system (6.11)
admits the following solution structure

WR(
x

t
;WL,WR) =



WL if x
t < λ−f ,

WL∗ if λ−f <
x
t < λ−s ,

WCL if λ−s <
x
t < λc,

WCR if λc <
x
t < λ+s ,

WL∗ if λ+s <
x
t < λ+f ,

WR if x
t > λ+f ,

(6.12)

also depicted in figure 6.1.
Now the choice of the different quadratures ρ̄1 and ρ̄2 is analyzed. Following the analysis

of the derivation of the well-balanced scheme in chapter 4, in order to check if the relaxation
system gives a well-balanced approximate Riemann solver, it is sufficient to check the inter-
mediate states for the pressure. After a straightforward computation, it can be found that
the relaxation pressures admit the form given in (6.13)
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Fig. 6.1: Solution structure to the Riemann problem for the system (6.11)

ψCL = ψL +
ψR − ψL +

(1−Fr2
loc)M

2
ref

(1−M2
loc)Fr

2
ref
ρ̄2(ZR − ZL)

2
+ cMlocMref

ūL − ūR
2

,

ψCR = ψR −
ψR − ψL +

(1−Fr2
loc)M

2
ref

(1−M2
loc)Fr

2
ref
ρ̄2(ZR − ZL)

2
+ cMlocMref

ūL − ūR
2

,

πL∗ = πL +
M2
loc

1 +M2
loc

(ψCL − ψL),

πR∗ = πR +
M2
loc

1 +M2
loc

(ψCR − ψR),

πCL = π∗L +
π∗R − π∗L +

Fr2
locM

2
ref

Fr2
refM

2
loc
ρ̄1(ZR − ZL)

2
+
cMref

Mloc

u∗L − u∗R
2

,

πCR = π∗R −
π∗R − π∗L +

Fr2
locM

2
ref

Fr2
refM

2
loc
ρ̄1(ZR − ZL)

2
+
cMref

Mloc

u∗L − u∗R
2

.

(6.13)

Assume now, that the initial condition for the Riemann problem admits a discrete hydro-
static equilibrium of the system (6.1) in the following way

uL = uR = 0,

pR − pL = −
M2
ref

Fr2
ref

ρ̄(ΦR − ΦL).
(6.14)

For the approximate Riemann solver defined by (6.11) to be well-balanced it is necessary
to have that from (6.14) there is
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ψCL = ψL = pL,

ψCR = ψR = pR,

πCL = πL∗ = πL = pL,

πCR = πR∗ = πR = pR.

(6.15)

To satisfy the relations (6.15) given (6.14), from (6.13) it is sufficient for the quadratures
ρ̄1 and ρ̄2 to satisfy

pR − pL = −
Fr2

locM
2
ref

Fr2
refM

2
loc

ρ̄1(ZR − ZL),

pR − pL = −
(1− Fr2

loc)M
2
ref

(1−M2
loc)Fr

2
ref

ρ̄2(ZR − ZL).

(6.16)

However, from the second relation in (6.14) the quadratures ρ̄1 and ρ̄2 must satisfy

ρ̄1 =
M2
loc

Fr2
loc

ρ̄,

ρ̄2 =
1−M2

loc

1− Fr2
loc

ρ̄.

(6.17)

Therefore the splitting of the source term defined in (6.8) can now be further simplified as

(
Fr2

loc

Fr2
ref

ρ̄1 +
1− Fr2

loc

Fr2
ref

ρ̄2)Zx = (
M2
loc

Fr2
ref

ρ̄+
1−M2

loc

Fr2
ref

ρ̄)Zx =
ρ̄

F r2
ref

Zx. (6.18)

The relation (6.18) can now be used to further simplify the relaxation system (6.11) to
get the new relaxation system

ρt + (ρu)x = 0

(ρu)t + (ρu2 +
M2
loc

M2
ref
π +

1−M2
loc

M2
ref

ψ)x = − ρ̄
F r2

ref
Zx

(ρv)t + (ρvu)x = 0

Et + (u(E +M2
locπ + (1−M2

loc)ψ)x = −M2
ref

Fr2
ref
ρ̄uZx

(ρπ)t + (ρuπ + c2u)x = ρ
ε (p− π)

(ρψ)t + (ρuψ + c2ū)x = ρ
ε (p− ψ)

(ρū)t + (ρuū+ 1
M2
locM

2
ref
ψ)x = − ρ̄

F r2
refM

2
loc
Zx + ρ

ε (u− ū)

Zt + uZx = 1
ε (Φ− Z)

. (6.19)

The relaxation system (6.19) is the final form of the derivations. In the next sections,
the numerical properties of the approximate Riemann solver defined from system (6.19) are
investigated. It should be remarked that even if the splitting of the source term is not present
anymore, it is implicitly built into the system (6.19). In fact, the form (6.19) arises naturally
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when considering the well-balanced property.

6.2 Stability and Robustness of the Relaxation Scheme

In this section, the stability, the algebra and the robustness of the relaxation scheme are
discussed. The results are very similar to the results in the chapter 4 and chapter 5. However,
they are repeated here for completeness. First, the stability of the relaxation system is
discussed.

Theorem 6.2.1. [Stability] The relaxation system (6.19) is a stable diffusive approximation
of (6.1), provided the following subcharacteristic condition holds

c2 > ρ2p′. (6.20)

Proof. The relaxation in the variables π and ψ is equivalent to the relaxation in chapter 5,
where it is found that to first order of the relaxation parameter there is

π = p− ε((c
2

ρ
− ρp′)ux),

ψ = p− ε((c
2

ρ
− ρp′)ux).

(6.21)

The relaxation parameter ū does not appear in the flux for the original variables and
therefore can be omitted in the analysis. The justification for this is given in Appendix A.

For the relaxation of the gravitational potential it can be found that to first order of the
relaxation parameter ε there is

Z = Φ− εuΦx. (6.22)

Using (6.21) and (6.22) in (6.19) gives

ρt + (ρu)x = 0

(ρu)t + px
M2
ref

= − ρ̄
F r2

ref
Φx + ε ρ̄

F r2
ref

(uΦx)x + ε

(
1

ρM2
ref

(c2 − ρ2p′)ux

)
x

(ρv)t + (ρvu)x = 0

Et + (u(E + p))x = −M2
ref

Fr2
ref
ρ̄uΦx + ε

M2
ref

Fr2
ref
ρ̄u(uΦx)x + ε

(
1
ρ(c2 − ρ2p′)(u

2

2 )x

)
x

,

which gives the subcharacteristic condition (6.20).

The next lemma concerns the basic properties of the system (6.19) and the structure of
the solution to the Riemann problem.

Lemma 6.2.1. The system (6.19) is hyperbolic. The eigenvalues λ±s = u± M2
loc

M2
ref

c
ρ ,

λ±f = u ± 1
M2
locMref

c
ρ and λC = u are linear degenerate where λc = u has multiplicity 4.

Moreover, the solution to the Riemann problem admits the following structure

147



6.2 Stability and Robustness of the Relaxation Scheme

WR(
x

t
;WL,WR) =



WL if x
t < λ−f ,

WL∗ if λ−f <
x
t < λ−s ,

WCL if λ−s <
x
t < λc,

WCR if λc <
x
t < λ+s ,

WL∗ if λ+s <
x
t < λ+f ,

WR if x
t > λ+f ,

(6.23)

where the solutions to the intermediate states can be computed explicitly. There is for ψ
ψCL = ψL +

ψR−ψL+
M2
ref

Fr2
ref

ρ̄(ZR−ZL)

2 + cMlocMref
ūL−ūR

2 ,

ψCR = ψR −
ψR−ψL+

M2
ref

Fr2
ref

ρ̄(ZR−ZL)

2 + cMlocMref
ūL−ūR

2 .

(6.24)

For the relaxation pressure π it holds that

πL∗ = πL +
M2
loc

1+M2
loc

(ψCL − ψL),

πR∗ = πR +
M2
loc

1+M2
loc

(ψCR − ψR),

πCL = π∗L +
π∗
R−π

∗
L+

M2
ref

Fr2
ref

ρ̄(ZR−ZL)

2 +
cMref

Mloc

u∗L−u
∗
R

2 ,

πCR = π∗R −
π∗
R−π

∗
L+

M2
ref

Fr2
ref

ρ̄(ZR−ZL)

2 +
cMref

Mloc

u∗L−u
∗
R

2 .

(6.25)

For the velocity u there is
uC =

u∗L+u∗R
2 − Mloc

cMref

π∗
R−π

∗
L+

M2
ref

Fr2
ref

ρ̄(ZR−ZL)

2 ,

uL∗ = uL − Mloc

cM2
ref (1+M2

loc)
(ψCL − ψL),

uR∗ = uR + Mloc

cM2
ref (1+M2

loc)
(ψCR − ψR).

(6.26)

For the inverse mass fractions τ one can therefore find that
τL∗ = τL + πL−πL∗

c2
,

τR∗ = τR + πR−πR∗
c2

,

τCL = τL + πL−πC
c2

,

τCR = τR + πR−πC
c2

.

(6.27)

And for the internal energies e there is

eL∗ = eL −
M2
loc

2c2
(πL − πL∗ +

1−M2
loc

1+M2
loc

(ψL − ψCL)),

eR∗ = eR −
M2
loc

2c2
(πR − πR∗ +

1−M2
loc

1+M2
loc

(ψR − ψCR)),

eCL = eL∗ − πL∗
M2
locπL∗+2(1−M2

loc)ψC
2c2

+ πC
M2
locπC+2(1−M2

loc)ψC
2c2

,

eCR = eR∗ − πR∗
M2
locπR∗+2(1−M2

loc)ψC
2c2

+ πC
M2
locπC+2(1−M2

loc)ψC
2c2

.

(6.28)
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Proof. The computation of the eigenvalues is straightforward and omitted for brevity. In
order to determine the solution to the intermediate states, the eigenvectors to the respective
eigenvalues have to be computed in order to determine the Riemann Invariants. In primitive
variables (ρ, u, v, π, e, ū, ψ, Z) there is

• λc: The eigenvectors read



1
0
0
0
0
0
0
0


,



0
0
1
0
0
0
0
0


,



0
0
0
0
1
0
0
0


,



0
0
0

−ρ̄M
2
ref

Fr2
ref

0

−ρ̄M
2
ref

Fr2
ref

1


.

Therefore the Riemann Invariants are Φc = {u, ū, ψ +
M2
ref

Fr2
ref
ρ̄Z, π +

M2
ref

Fr2
ref
ρ̄Z}.

• λ±s = u± cMloc
ρMref

: The eigenvectors read



ρ2

± cMloc
Mref

0
c2

M2
locπ + (1−M2

loc)ψ
0
0
0


.

Therefore the Riemann Invariants are

Φ±s = {u± cMloc
ρMref

, π ∓ cMref

Mloc
u, e− πM

2
locπ+2(1−M2

loc)ψ

2c2
, ψ, ū, v, Z}.

• λ±f The eigenvectors read



ρ2

± c
MrefMloc

0
c2

M2
locπ + (1−M2

loc)ψ
±c(1+M2

loc)

M3
locMref

c2(1+M2
loc)

M2
loc

0


.

Therefore the Riemann Invariants are

Φ±f = {π +
c2

ρ
, ψ −

1 +M2
loc

M2
loc

π, ψ ∓ c
Mref (1 +Mloc)

2

Mloc
u, ψ ∓ cMlocMref ū,

e− Mloc2

2c2
(π2 +

1−M2
loc

1 +M2
loc

ψ2), v, Z}. (6.29)

The eigenvalues are linear degenerate, because they are Riemann invariants for their re-
spective field. The solution to the intermediate states can be computed by using the given
Riemann invariants.
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Consider now the robustness of the approximate Riemann solver (6.23).

Theorem 6.2.2 (Robustness). Let WL,WR ∈ Ωphys.

For Mloc < 1, Mref /∈
[

M2
loc

2+M2
loc+
√

1−M4
loc

,
M2
loc

2+M2
loc−
√

1−M4
loc

]
and choosing c > 0 large enough,

the states W defined in lemma 6.2.1 also belong to the set Ωphys.

Proof. The positivity of the density follows from the ordering of the eigenvalues. Since the
eigenvalues do not depend on the source term, the proof is analogous to the proof of Theorem
5.2.1.

The proof of the positivity for the internal energies is also similar to the proof of Theorem
5.2.1, as soon as it is computed that also here it holds that

eL∗ = eL +M2
loc(θ

2
1 +

1−M2
loc

1 +M2
loc

θ2
2)

(uL − uR)2

8
+O(

1

c
),

eLC = eL +

(
M2
loc

1−M2
loc

1 +M2
loc

θ2
3 +M2

locθ
2
2 − 2(1−M2

loc)θ3(θ1 − θ2)

)
(uL − uR)2

8
+O(

1

c
).

Finally, as in chapter 5, the consistency of the newly proposed relaxation scheme with the
scheme developed in chapter 4 is considered.

Theorem 6.2.3. (Consistency) For Mloc → 1, the numerical scheme based on the system
(6.19) goes to the numerical scheme based on the system (4.12).

Proof. When Mloc → 1, the last two equations in (6.19) do not have any influence one
the rest of the system. The upper part of the system (5.19) in turn is identical to the non-
dimensional form of the relaxation system (4.12).

6.3 Well-Balanced and Asymptotic Preserving Properties

This section is concerned with the well-balanced and asymptotic preserving properties of
the proposed relaxation scheme. Following the notions of chapter 5, the numerical scheme
for the non-dimentionalized Euler equations (6.1) is called asymptotic preserving if it gives
a consistent discretization of the limit equations of (6.1) when M,Fr → 0. Under the
assumption (6.2), the limit equations are the hydrostatic equilibrium equations. Therefore
in order to show that the scheme is asymptotic preserving, it is sufficient to show its well-
balanced property. However, in (1.76) a set of asymptotic preserving states is defined for the
system (6.1). As it is shown in chapter 5, preserving the scaling of the dependent variables
is crucial in order to control the diffusion in the low Mach number regime. Therefore the
scaling of the intermediate states will also be considered in this section.

First, the well balanced property of the approximate Riemann solver is considered.

Theorem 6.3.1 (Well-Balancedness). Let WL and WR be given in Ωphys such thatuL = uR = 0,

pR − pL +
M2
ref

Fr2
ref
ρ(WL,WR)(ΦR − ΦL) = 0.

(6.30)
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Then the approximate Riemann solver is at rest, i.e. satisfies relation (2.82) and is therefore
well-balanced.

Proof. When looking at the intermediate states defined in Lemma 6.2.1 the proof is straight-
forward. At first the relations (6.30) give that ψCL = pL and ψCR = pR. Therefore there
is π∗L = pL, π∗R = pR and u∗L = u∗R = 0. With these and again with (6.30), it further holds
that πCL = pL, πCR = pR and uC = 0. The respective relations for τ and e follow from the
properties of π and ψ.

Remark 6.3.1. The quadrature ρ(WL,WR) is general and in chapter 4 it is discussed how
to choose this quadrature in order to exactly preserve certain classes of hydrostatic equilibria.
The results form Lemma 4.2.3 can be directly applied also in this case.

Since the scheme is now shown to be consistent with the hydrostatic equilibrium, the next
step is to investigate the scaling of the dependent variables in the low Mach number regimes,
which is the subject of the next Theorem.

Theorem 6.3.2 (Preservation of Scaling). Let WL and WR be given in ΩAP , then the states
WL∗ ,WR∗ ,WCL ,WCR all belong to the set ΩAP .

Proof. Since the asymptotic preserving set in this case only gives restrictions on the pressure,
the only thing to check is the scaling of π and ψ. From lemma 6.2.1 there is for ψ

ψCL = ψL +
ψR − ψL +

M2
ref

Fr2
ref
ρ̄(ZR − ZL)

2︸ ︷︷ ︸
=O(M2)

+cMlocMref
ūL − ūR

2
= pL +O(M2),

ψCR = ψR −
ψR − ψL +

M2
ref

Fr2
ref
ρ̄(ZR − ZL)

2︸ ︷︷ ︸
=O(M2)

+cMlocMref
ūL − ūR

2
= pR +O(M2),

and therefore for the relaxation pressure π it holds that

πL∗ = πL +
M2
loc

1 +M2
loc

(ψCL − ψL)︸ ︷︷ ︸
=O(M2)

= pL +O(M4),

πR∗ = πR +
M2
loc

1 +M2
loc

(ψCR − ψR)︸ ︷︷ ︸
=O(M2)

= pR +O(M4),

πCL = π∗L +
π∗R − π∗L +

M2
ref

Fr2
ref
ρ̄(ZR − ZL)

2︸ ︷︷ ︸
=O(M2)

+
cMref

Mloc

u∗L − u∗R
2

= pL +O(1),

πCR = π∗R −
π∗R − π∗L +

M2
ref

Fr2
ref
ρ̄(ZR − ZL)

2︸ ︷︷ ︸
=O(M2)

+
cMref

Mloc

u∗L − u∗R
2

= pR +O(1).

(6.31)
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Since π is in the momentum equation of relaxation system multiplied by a factor of O(1),
the derived scaling is consistent and therefore concludes the proof.

6.4 Definition of the numerical scheme

The numerical scheme is defined completely analogous to section 4.4. Observe that the
source term has to be included into the flux function since the gravitational potential is
advected with the fluid flow. Therefore the source term is not concentrated on the cell
interface anymore and has a non zero contribution to the volume integral. Also keep in
mind that in chapter 4 only time explicit discretization of (4.76) are concerned. In this
chapter, for efficiency, an implicit time discretization is considered.

6.5 Numerical Results

In this section the practical performance of the proposed relaxation scheme is investigated.
Following Theorem (6.2.3), to test the effect of the introduced splitting, two different schemes
are compared. The scheme S1 is denoted as the numerical scheme resulting from the system
(6.19), when the local Mach number is set to 1, i.e. Mloc = 1. The scheme denoted as
S2 results from evaluating the parameter Mloc from the local flow properties. In every test
an ideal gas law is used with γ = 5

3 . For efficiency, in every test in this chapter, only
implicit time discretizations are used. The scheme is implemented in the SLH code, where
the ESDIRK43 is chosen as the time integrator. Finally, equidistant grids are used.

6.5.1 Vortex in a Gravitational Field

The first test case concerns vortices in a gravitational field. In chapter 5, the Gresho vortex
is used to show the advantage of the low Mach relaxation scheme. Here, it is desired to adapt
a similar test case to the Euler equations with gravity. In the Appendix C, stationary ax-
isymmetric vortices are derived. They are used as an initial condition and then numerically
integrated for one rotation. The grid resolution is chosen as Nx = Ny = 40 and the compu-
tational domain is set D = [0, 1]× [0, 1]. Additionally, in all tests the case of Mref = Frref
is considered. Since the solution is axisymmetric, it is given in polar coordinates where the
center is set at (0.5, 0.5). The gravitational potential is set as

Φ(r) = r2.

In the Appendix C, two different versions of such vortices are derived. In both cases it
is critical to determine a velocity profile in dependence on the distance to the center. The
geometric parameters ri are set as

r0 = 0, r1 = 0.2, r2 = 0.4. (6.32)

First, a vortex on top of a fixed density distribution is derived. In the here assumed scaling
of the Mach and the Froude number, the solutions are given by

ρ(r) =

{
exp(−Φ(r)

RT1
) if r ≤ r2,

exp(−Φ(r2)
R ( 1

T1
− 1

T2
)) exp(−Φ(r)

RT2
) if r > r2.

(6.33)
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p(r) =

{
RT1 exp(−Φ(r)

RT1
) +M2 exp(h(r)) + C if r ≤ r2,

RT2ρ(r) if r > r2.
(6.34)

vφ =

√
r exp((

Φ(r)

RT1
+ h(r)))h(r)r, (6.35)

with C = −M2 exp(h(0)) and T2 = p(r2)
Rρ(r2) .

The parameter function h(r) is chosen as a piecewise quadratic function, with

h(r) =


a0,1r +

a1,1

2 r2 − C1 if r ≤ r1,

a0,2r +
a1,2

2 r2 − C1 + C2 − C3 if r1 ≤ r ≤ r2,

C4 − C1 + C2 − C3 if r2 ≤ r.
(6.36)

Following Appendix C, the vortex is completely defined by setting the parameters as

h(0) = 0, h̄ = 1, R = 8.3144598 ρ(0) = 1, p(0) =
ρ(0)π2

717
8M

2
ref

. (6.37)

The second family of vortices is derived by considering a constant temperature throughout
the entire computational domain. The distributions of the dependent variables are given as

ρ(r) = exp(
M2

RT
F (r)),

p(r) = RTρ,

(6.38)

where

F ′(r) = f(r) =
v2
φ

r
− Φr

Fr2
. (6.39)

The primitve of the term
v2
φ

r is computed as

∫ r

0

v2
φ

2
dr =


a2

0,1 log r + 2a0,1a1,1r +
a2

1,1

2 r2 − C1 if r ≤ r1,

a2
0,2 log r + 2a0,2a1,2r +

a2
1,2

2 r2 − C1 + C2 − C3 if r1 ≤ r ≤ r2,

C4 − C1 + C2 − C3 if r2 ≤ r.

(6.40)

Following Appendix C, the solution is completely determined by setting the following
parameters

R = 8.3144598, v̄ = 1, ρ(0) = 1, p(0) =
ρ(0)π2

155
8M

2
ref

. (6.41)

For both families, if the angular velocity vφ tends to zero, the vortices tend towards an
isothermal hydrostatic equilibrium. The vortices (6.33) - (6.35) are derived in the spirit
of the original Gresho vortex, where, on top of a constant density profile, the centrifugal
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forces emerging from the velocity profile are balanced by a pressure gradient, which results
from an increase in temperature in the outer parts of the vortex. Here the constant density
is substituted by a density distribution with respect to an isothermal equilibrium. The
centrifugal forces are then balanced by an increase in temperature in the outer parts of the
vortex. However, when the solution further than r2 is considered, an isothermal equilibrium
solution has to be taken, where the temperature is different from the temperature that is used
to determine the density profile inside the vortex. This is due to the increase in temperature
through the vortex and the temperature outside the vortex is just the temperature at the
boundary of the vortex. The families (6.38)- (6.40) are computed by considering a fixed
temperature in all the computational domain. The formulas are simpler as for the other
family. However, when approximating flows in a gravitational field, in chapter 4 it is found
that the density distribution is critical for the quality of numerical approximations. Only for
specific density distributions the quadrature of the source term proposed in (4.16) can be
exact. If a given density distribution is not captured exactly by the quadrature, numerical
errors are introduced by the scheme. The density distribution in (6.38) is not of an isothermal
type. It is expected that numerical errors due to the source term discretization will influence
the numerical integration. The density profile (6.33) is of an isothermal type. However,
there is a change in temperature at the boundary of the vortex. This may also lead to
inconsistencies in the approximation of the source term. The numerical results for the
scheme S2 are depicted in figure 6.2.

In both cases, the scheme is able to capture the vortex dynamics. However, in contrast
to the Gresho vortex test in chapter 5, the diffusion still depends on the Mach number.
Although not as strong as compared to the standard upwind scheme. It is conjectured that
this behavior is related to the quadrature of the source term. As it has been discussed, the
quadrature is not consistent with any of the density distributions. Although it is suspected
that the errors are smaller in the case of the vortex families (6.33) - (6.35). Also in figure 6.2
it can be seen, that the diffusion of the vortex is stronger in the case of the families (6.38)-
(6.40).

Additionally, in figure 6.3 the evolution of the relative total kinetic energies is plotted in
the different regimes for the different schemes. It can be seen that for both vortex families
the scheme S2 performs significantly better then the scheme S1 when the results at the
same Mach number is compared. The scheme S1 again shows convergence problems in the
Newton iteration and results can not be shown in every regime. Also the same dependence
of the type of vortex with respect to the diffusion can be seen as in figure 6.2.
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Fig. 6.2: Mach numbers of the vortices after one rotation computed by the scheme S2. Left:
Vortices of the type (6.33) - (6.35). Right: Vortices of the type (6.38)- (6.40). From top to
bottom the reference Mach number is chosen as Mref = 10−2,Mref = 10−3 and Mref = 10−4

respectively.
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Fig. 6.3: Relative total kinetic energies of the vortices after one rotation computed by the
schemes S1 and S2 at different regimes. Left: Vortices of the type (6.33) - (6.35). Right:
Vortices of the type (6.38)- (6.40).

6.5.2 Rise of a Hot Bubble

The next test case is suggested in [130]. The computational domain is set as
D = [0km, 10km] × [0km, 15km]. In x-direction periodic boundary conditions and in y-
direction solid wall boundary conditions are considered. The gravitational potential is set
as

Φ(y) = gy, (6.42)

where g = 9.81m
s2

, i.e. the gravitational acceleration is along the y-axis. The stratification of
the atmosphere is defined in terms of the potential temperature θ. The potential temperature
is the temperature a fluid parcel would get, if it would be brought adiabatically to a standard
pressure p0. θ is defined by the following relation

θ = T (
p0

p
)
R
cp , (6.43)

where p0 is a reference pressure and is set as p0 = 1bar. The potential temperature is
considered as constant throughout the atmosphere as θeq = 300K. Rearranging (6.43) by
using the relations γ =

cp
cv

and cp − cv = R, the density and the pressure are connected in
the atmosphere by the following relation

peq = ργeq(Rθeq)
γp
γ R
cP

0 . (6.44)

Therefore the atmosphere is of the polytropic type given in (4.6). In particular, due to
the polytropic coefficient, it is also isentropic. The reference pressure p0 is imposed at the
bottom of the computational domain. Therefore the density at the bottom satisfies

ρeq(x, 0) =
p0

θeqR
. (6.45)

The solution can then be integrated over the whole domain following the formulas in
(4.6). The aim is to compute approximations to non-stationary solutions. To this end,
a small disturbance in the potential temperature on the atmosphere is considered. It is
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modeled as an axisymmetric bubble with the center xc = 5.0km and yc = 2.75km. The
distance to the center r is computed by

r =

(
x− xc
r0

)2

+

(
y − yc
r0

)2

, (6.46)

where r0 = 2.5 is a scaling factor. The perturbations is now set as

θ − θeq =

{
θ0 cos2(πr2 ) if r ≤ 1,

0 else,
(6.47)

for θ0 = 6.6K. For the non-dimentionalization, a reference Mach number of Mref = 10−4 is
chosen.

The evolution of the perturbation is now integrated by the schemes S1 and S2 up to the
time t = 800s. It is hard to compute the exact evolution of the perturbation. Moreover,
in contrast to the one dimensional tests in chapter 4, multidimensional effects influence the
solution and it is not clear in advance how to judge the quality of the numerical approx-
imation. Therefore it is chosen to compare the different schemes also on different mesh
sizes. Assuming a convergent behavior of the numerical schemes, it is hoped that this gives
a deeper intuition on the expected structure of the solution.

Three different resolutions are considered

Nx Ny

Low Res. 40 60

Mid. Res. 80 120

High Res. 120 180

, resulting in an equidistant cartesian mesh.
It is decided to analyze three different variables in this test. First, the resulting local Mach

numbers are investigated in order to determine whether the numerical approximations are in
the low Mach number regime. This is depicted in figure 6.4. After that, the resulting density
distributions, see figure 6.5, and temperature distributions, see figure 6.6, are discussed.

From figure 6.4, it can be seen, that in all the simulations the maximum local Mach number
is about 10−2. Concluding from the previous simulations, it is expected that the scheme S1
will be more diffusive then the scheme S2 in this regime. Although the effect is maybe not
too strong. Now the quality of the numerical approximation is analyzed by investigating
the results shown in figure 6.5 and figure 6.6. In both variables it can be seen, that the
numerical approximations show a convergent behavior when the resolution is increased.
Therefore the solutions at the highest resolution are taken as reference solutions to which
the other approximations can be compared. The scheme S2 shows definitely a less diffusive
behavior. Especially the vortices at the edges of the rising bubble are better captured by
the scheme S2. Indeed, increasing the resolution results in better approximations for the
scheme S1.
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Fig. 6.4: Mach number in the rise of a hot bubble test at t = 800s. Left: Scheme S1. Right:
Scheme S2. The resolution increases from top to bottom.
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Fig. 6.5: Fluctuations in density with respect to the background atmosphere in the rise of a
hot bubble test at t = 800s. Left: Scheme S1. Right: Scheme S2. The resolution increases
from top to bottom.
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Fig. 6.6: Temperature in the rise of a hot bubble test at t = 800s. Left: Scheme S1. Right:
Scheme S2. The resolution increases from top to bottom.

160



6 A Low Diffusion scheme for the Euler Equations with Gravity

6.5.3 Hot and Cold Bubbles

The next test case is suggested in [146]. The atmosphere is the same as in the test case in
section 6.5.2. However, now two perturbations are considered. A large hot bubble rising and
a small cold bubble falling in the atmosphere. Both bubbles are initialized as follows

∆θi =

{
θi cos2(πr2 ) if r ≤ ri,
θi exp(− (r−ri)2

σ2 ) else,
(6.48)

where

r = (x− xi)2 + (y − yi)2 , (6.49)

for i ∈ {cold, hot} . The total potential temperature is then given by

θ − θeq = ∆θhot + ∆θcold. (6.50)

The parameters for the two bubbles are given as follows

rhot = 150m xhot = 500m yhot = 300m ∆θhot = 0.5K ,
rcold = 0m xcold = 560m ycold = 640m ∆θcold = −0.15K ,

while for both bubbles there is σ = 50m. The computational domain is set as
D = [0m, 1000m] × [0m, 1000m] and the boundary conditions are the same as in the test
from section 6.5.2. Again the numerical approximations are computed at different resolutions
in order to investigate the qualitative behavior of the numerical schemes. Three different
resolutions are considered

Nx Ny

Low Res. 50 50

Mid Res. 100 100

High Res. 150 150

, resulting in an equidistant cartesian mesh.
Again the two different schemes S1 and S2 are compared for their performance. The

initial condition is integrated up to time t = 600s. First analyze the resulting Mach number
in this test case. From figure 6.7 it can be seen that the Mach numbers in that test case do
not exceed the regime of 10−3. Therefore it is expected that there is a significant difference
in the performance of both schemes. In fact, when analyzing the density fluctuations and
temperature distributions from figure 6.8 and figure 6.9 respectively it can be concluded that
the scheme S2 performs significantly better in capturing the fine structures of the solution.
Just when the highest resolution is chosen for the scheme S1, the results are comparable to
the results computed with the scheme S2 on the lowest resolution.
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Fig. 6.7: Mach number in the hot and cold bubble test case at t = 600s. Left: Scheme S1.
Right: Scheme S2. The resolution increases from top to bottom.
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Fig. 6.8: Density fluctuations with respect to the background atmosphere in the hot and
cold bubble test case at t = 600s. Left: Scheme S1. Right: Scheme S2. The resolution
increases from top to bottom.
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Fig. 6.9: Temperature in the hot and cold bubble test case at t = 600s. Left: Scheme S1.
Right: Scheme S2. The resolution increases from top to bottom.
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7 Towards a Multidimensional Relaxation
Scheme

This chapter is concerned with a genuinely multidimensional approach for defining the nu-
merical fluxes. As has been pointed out in chapter 5, the excessive diffusivity of standard
upwind schemes only occurs when multidimensional flows are considered. Therefore the idea
is to design an upwind scheme that incorporates the multidimensionality of the problem
from the start.

Many different numerical schemes have been proposed that incooperate the upwind mecha-
nism also at the cell vertices. For some examples of publications concerning multidimensional
numerical fluxes see [133],[134],[135],[5],[124],[7],[8],[96]. However, the here proposed Ansatz
is not completed and there are some issues which have to be tackled in order to make the
it ready for numerical tests. In the end, this chapter is considered as a possibility for the
author to contribute some thoughts on the problem which may lead to further research in
the future.

When dealing with a multidimensional cartesian mesh, it is suggested in section 2.5 to
consider the one dimensional fluxes across the boundaries of the cell to determine the nu-
merical fluxes. The idea is that the one dimensional fluxes can be computed by solutions to
the Riemann problem. However, doing so is neglecting that in the corners of the cells, there
may be a complex contribution due to the influence of 4 different states instead of two. This
leads to the consideration of the 2-dimensional Riemann problems at the corners of the cell,
see figure 7.1.

Finding the solution to the two dimensional Riemann problem is very hard. In fact, it
is not clear, if a unique entropy solution exists in the class of weak solutions. However,
approximate Riemann solvers have been successfully used to define the numerical fluxes
in the one-dimensional case. Therefore one might hope to extend those techniques to the
multidimensional case. This work uses heavily the Suliciu relaxation. In the following it is
thought to extend this special relaxation technique to two space dimensions.

7.1 Standard Suliciu Relaxation for the Full Euler System

First consider the full Euler system in two space dimensions as
ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

Et + (u(E + p))x + (v(E + p))y = 0.

(7.1)

Next apply the standard Suliciu relaxation technique and rewrite the system in primitive
variables to get
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y

x

QSW

QNW

QSE

QNE

Fig. 7.1: Conceptional drawing of a 4-fielded two dimensional Riemann problem



ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + π)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + π)y = 0,

Et + (u(E + π))x + (v(E + π))y = 0,

(ρπ) + (ρuπ + c2u)x + (ρvπ + c2v)y = ρ
ε (p− π).

(7.2)

The system (7.2) can also be put in quasilinear form as

Qt +AQx +BQy =
1

ε
R. (7.3)

A critical feature of the one dimensional Suliciu relaxation system is that it can be di-
agonalized. Then, the Riemann problem can be solved by considering the transport of the
characteristic variables. However it can be verified, that the matrices A and B in (7.3) do not
commute, i.e. AB 6= BA. Therefore, both operators can not be diagonalized simultaneously.
The Ansatz here is now to find a relaxation system, where the operators commute, i.e. the
system can be diagonalized also in the fully two dimensional case.

7.2 Commutative Suliciu Relaxation for the 2-dimensional Euler
System

The key idea to derive the extended Suliciu relaxation is to introduce an extended relaxation
pressure π in the form of a tensor as follows
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π =

(
π ψ
ψ π

)
, (7.4)

such that the equations in conservative form now read

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + π)x + (ρuv + ψ)y = 0,

(ρv)t + (ρuv + ψ)x + (ρv2 + π)y = 0,

Et + (u(E + π) + vψ)x + (v(E + π) + uψ)y = 0,

(ρπ)t + (ρuπ + c2u)x + (ρvπ + c2v)y = ρ
ε (p− π),

(ρψ)t + (ρuψ + c2v)x + (ρvψ + c2u)y = ρ
ε (D − ψ).

(7.5)

Therefore the new relaxation variable ψ can be understood as a perturbation of a constant.
In specific, the constant D is chosen as zero. The the system (7.5) can also be put in
quasilinear from as

Qt +AQx +BQy =
1

ε
R. (7.6)

A straightforward computation shows, that the matrices A andB now commute. Therefore
the homogeneous system part of (7.5) can be put into diagonal form where the characteristic
variables read 

φ1

φ2

φ3

φ4

φ5

φ6

 =



e− π2+ψ2

2c2
π
c2

+ 1
ρ

π+ψ
2c −

u+v
2

π−ψ
2c + v−u

2
π−ψ

2c + u−v
2

π+ψ
2c + u+v

2


. (7.7)

The diagonalized system now reads



φ1

φ2

φ3

φ4

φ5

φ6


t

+



u 0 0 0 0 0
0 u 0 0 0 0
0 0 u− c

ρ 0 0 0

0 0 0 u− c
ρ 0 0

0 0 0 0 u+ c
ρ 0

0 0 0 0 0 u+ c
ρ





φ1

φ2

φ3

φ4

φ5

φ6


x

+



v 0 0 0 0 0
0 v 0 0 0 0
0 0 v − c

ρ 0 0 0

0 0 0 v + c
ρ 0 0

0 0 0 0 v − c
ρ 0

0 0 0 0 0 v + c
ρ





φ1

φ2

φ3

φ4

φ5

φ6


y

=



0
0
0
0
0
0

 . (7.8)

An interesting property of the system (7.5) is that the conservation of the angular mo-
mentum is not lost due to the introduction of the new relaxation variable. To show that,
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first define the angular momentum w = u ∧ x, where x := (x, y)T . Compute first the wedge
product with the momentum equations in the system (7.1) to get that

(ρw)t +∇ · (ρu× u) + curl(px) = 0. (7.9)

Now compute the wedge product of x with the momentum equations in the new multi-d
relaxation system (7.5) to get

(ρw)t +∇ · (ρu× u) + curl(px) + curl(ψy) = 0, (7.10)

where y := (y, x)T . Therefore, also in the new relaxation approach, the evolution equation
for the angular momentum can be put into conservative form. Moreover, there is no relax-
ation source term on the right hand side. Therefore the new relaxation system allows for
conservation of the angular momentum.

As for the previous relaxation systems, a Chapman Enskog stability analysis can be per-
formed. After a straightforward computation the momentum equations read

(ρu)t + (ρu2 + p)x + (ρuv)y = ε(((
c2

ρ
− ρp′)ux)x + ((

c2

ρ
− ρp′)vy)x + (

c2

ρ
vx)y + (

c2

ρ
uy)x),

(ρv)t + (ρuv)x + (ρv2 + p)y = ε(((
c2

ρ
− ρp′)ux)y + ((

c2

ρ
− ρp′)vy)y + (

c2

ρ
vx)x + (

c2

ρ
uy)y),

(7.11)

and for the energy equations it holds that

Et + (u(E + p))x + (v(E + p))y = ε((
c2

ρ
− ρp′)((u

2

2
)x + uvy)x + (

c2

ρ
− ρp′)((v

2

2
)x + vux)y)

+ ε(
c2

ρ
((
v2

2
)x + vuy)x +

c2

ρ
((
u2

2
)y + uvx)y).

(7.12)

Therefore the subcharacteristic condition reads

c2 > ρ2p′ (7.13)

One can hope to get a stable numerical scheme when defining the numerical fluxes by
the new relaxation system (7.5). However, even though the system is now diagonalizable,
the solution to the Riemann problem is far from straightforward. The problem is that the
transport equations for the characteristic variables in (7.8) are not decoupled. The Suliciu
relaxation system only admits a linear degenerate system and not a linear system. Therefore
the solution to the Riemann problem can take a very complex shape. To see this, numerical
experiments are performed on the homogeneous part of the new relaxation system (7.5),
where for the definition of the numerical fluxes the approach proposed in section 2.5 is
used. Various two dimensional Riemann problems are used as initial conditions. Without
specifying them here, some solutions are shown in figure 7.2.

From these simulations it can be conjectured that the solution to the two dimensional Rie-
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7 Towards a Multidimensional Relaxation Scheme

Fig. 7.2: From top to bottom: Different numerical approximations to the solution of the two
dimensional Riemann problem for the homogeneous part of system (7.5). Left: Distribution
of the characteristic variable Φτ = φ2. Right: Distribution of the density ρ to the respective
Riemann problem.
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mann problem admits a piecewise constant solution. However, the structure of the solution
might still be very complicated and varies strongly for different initial conditions. Therefore,
up to this point it seems impractical to try to compute these solutions, since computing all
these different structures is time consuming. However, a crucial point that gives rise to this
complexity is the dependence of the eigenvalues on the characteristic variables. Should this
Ansatz be topic of further research, this deficiency has to be resolved in order to arrive at a
practical numerical scheme.
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8 Conclusion and Outlook

In this work, the numerical approximation of models for atmospheric fluid flows were con-
sidered. The focus is on two challenges in the approximations of these models. First, the
numerical treatment of source terms due to a varying bottom topography in the Shallow
Water case, or due to gravity in the compressible Euler equations. The second challenge is
the accurate approximation of low Mach number flows in the compressible Euler equations.
The aim is to develop numerical schemes that give accurate approximations of the respective
flows even on a coarse mesh.

In chapter 3, a well-balanced scheme based on the HLL approximate Riemann solver ap-
proach has been derived. The resulting scheme is able to accurately capture all the one
dimensional equilibrium solutions of the Shallow Water equations. It has been shown that
a specific challenge in preserving all the equilibria is the case of transcritical flows. Here the
waves from the homogeneous part are in resonance with the standing wave coming from the
source term. Different models are developed to deal with the different flow regimes. More-
over, it is shown, that these models blend into each other when the type of flow changes.
Additionally, a formally second order extension is suggested to enhance the accuracy of
the scheme. In the literature, often an iterative algorithm has to be used to compute the
second order extension. This is circumvented by solving for the roots directly. Numerical
experiments are conducted to show the advantages of this well-balanced approach on coarse
grids. However, the scheme is not proven to be robust, i.e. it might give unphysical solu-
tions when wet and dry areas are considered. A stability analysis is also missing for this
model. However, for small perturbations of these equilibrias, the scheme seems to perform
as expected.

In chapter 4, a well-balanced scheme based on the Suliciu relaxation technique for the
hydrostatic equilibrium solutions of the Euler equations with gravity is developed. A major
challenge is that the hydrostatic equilibrium equations are underdetermined and therefore do
not admit unique solutions. It is shown that the scheme is able to accurately capture certain
classes of the hydrostatic equilibria. It is shown that the well-balanced property strongly
depends on the choice of a quadrature rule. Here, quadrature formulas for specific classes of
equilibria are derived. However, the scheme admits more flexibility since it does not demand
a priori a specific description of the equilibrium. In fact, the scheme allows for the use of
different quadratures which are not derived in this work to seek for accurate approximations
of specific atmospheres. The scheme is further shown to be robust and entropy stable.
Numerical experiments are then conducted in order to investigate the properties of the
scheme. Here it is decided to put emphasis on the influence of the choice of the quadrature
rule. The scheme is tested on different model atmospheres. It is shown that the consistency
with a certain class of hydrostatic equilibria is in general of major importance to achieve
accurate solutions on coarse grids. However, there might be special equilibria where different
quadratures give similar results. It is also shown that the scheme naturally extends to two
space dimensions as well as a formally second order extension is presented. In [141] it is shown
that the scheme actually can be extended to unstructured meshes as well. Furthermore it

171



8.0

is found there that the numerical scheme also performs better than a fractional splitting
method when the flow is far away from equilibrium. This is thought to be an effect of
including the source term into the upwinding process. An interesting question is how to
tackle the conservation of the total energy throughout the numerical simulation. Moreover,
in [141] the scheme is implemented in a moving mesh code. However, for the simulations the
mesh has to be held fixed. An extension to a moving mesh can be an interesting challenge.

In chapter 5, a low diffusive scheme based on the Suliciu relaxation technique for the com-
pressible Euler equations is developed. It is shown that the standard upwind scheme is not
able accurately capture flows at low Mach numbers. Three different aspects of this behavior
are considered, namely the analysis of the scaling of the intermediate states, the analysis of
the diffusion and asymptotic preserving properties. It is shown that the adapted relaxation
scheme is compatible with the low Mach number behavior in all of these three aspects. More-
over, it is shown that the scheme is robust and stable with respect to a Chapman-Enskog
analysis. The stronger entropy stability as for the well-balanced scheme from chapter 4
could not be shown. Even more, the robustness results only apply to time explicit time
discretizations. However, for reasons of efficiency only implicit time discretizations are fea-
sible in practical applications. How to transfer the stability properties from the explicit to
the implicit time stepping techniques is subject to further research. Numerical tests are
performed in order to show the applicability of the new scheme. At first, a shock tube test
is considered to investigate how the new relaxation scheme handles discontinuities. It is
found that the new relaxation schemes shows a slightly more diffusive behavior at shocks,
while the performance at contact discontinuities is comparable with the standard Suliciu
relaxation approach, while a slightly less diffusive behavior can be observed at rarefaction
waves. Following this, a Gresho vortex test is considered. The new scheme shows good
performance on the vortex test. Moreover, it is shown that the diffusion is independent of
the Mach number, making the scheme ready to perform simulations on even smaller Mach
numbers than considered here. Also a Kelvin-Helmholtz instability is considered, where the
new scheme shows a better performance than the standard relaxation scheme.

In chapter 6 the schemes from chapter 4 and chapter 5 are combined in order to develop a
scheme to approximate low Mach number flows in a stratified atmosphere. It is shown that
all the properties from the previous developed schemes transfer to the hybrid scheme except
the entropy stability. Similar to chapter 5 only a stability with respect to a Chapman-Enskog
analysis can be shown. Numerical tests are performed to show the practical applicability of
the scheme. First, the Gresho vortex for the homogeneous Euler equations is extended to
the Euler equations with gravity. Two different versions of this vortex are tested. Similar
to chapter 5, the new relaxation scheme shows a less diffusive behavior in the vortex test.
However, the diffusion seems to depend on the stratification of the density. It is conjectured
that the source quadrature chosen to approximate the source term as suggested in chapter
4 may influences the diffusivity. A further investigation on the choice of the quadrature on
the diffusivity in these tests is considered as an interesting subject of future research. Next,
two tests are performed that consider the rising and falling of hot and cold bubbles in an
isentropic atmosphere. It is shown that the new scheme outperforms the standard relaxation
scheme. The difference of the two schemes is even stronger the lower the Mach number in
the fluid flow is considered. The disadvantage of these tests is that an explicit solution is
not known. For the vortex tests the solutions is known explicitly, since these vortices are
time independent. Further research may involve the derivation of time dependent solutions
to the Euler equations with gravity to achieve a better justification of the numerical results.
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8 Conclusion and Outlook

Chapter 7 contains some remarks on an attempt to derive a multidimensional relaxation
scheme. Some stability properties are shown as well as a conservation property for the
angular momentum. The Ansatz for the new relaxation scheme is that the operators in
the different spatial directions commute and the system can be diagonalized. However,
it is investigated by some numerical experiments that even though the relaxation scheme
admits a piecewise constant solution, the coupled transport of the characteristic variables
give a complicated solution structure. For now, it seems impractical to exactly compute the
solution in a numerical scheme to define the numerical fluxes. Further research is needed to
achieve a simpler solution structure.
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Appendix A. Analysis of the alternative Relaxation System

Consider the alternative relaxation system proposed in section 5.2.1.

ρt + (ρu)x = 0

(ρu)t + (ρu2 +
M2
loc

M2
ref
π +

1−M2
loc

M2
ref

ψ1+ψ2

2 )x = 0

(ρv)t + (ρvu)x = 0

Et + (u(E +M2
locπ + (1−M2

loc)
ψ1+ψ2

2 )x = 0
(ρπ)t + (ρuπ + c2u)x = ρ

ε (p− π)

(ρψ1)t + (ρuψ1 + c2

MlocMref
ψ1)x = ρ

ε (p+ cMlocMrefu− ψ1)

(ρψ2)t + (ρuψ2 − c2

MlocMref
ψ2)x = ρ

ε (p− cMlocMrefu− ψ2)

. (A.1)

Compute the Chapman Enskog expansion for a stability analysis of system (A.1). From
the last three equations of (A.1), there is for π, ψ1, ψ2

π
ψ1

ψ2

=
=
=

p
p+ cMlocMrefu
p− cMlocMrefu

−
−
−

ε(πt + uπx + α2

ρ ux)

ε(ψ1,t + (u+ c
ρMlocMref

)ψ1,x)

ε(ψ2,t + (u− c
ρMlocMref

)ψ2,x)

. (A.2)

For the relaxation pressures the following expansions are considered

π = π0 + επ1 + h.o.t.,

ψ1 = ψ1,0 + εψ1,1 + h.o.t.,

ψ2 = ψ2,0 + εψ2,1 + h.o.t.,

(A.3)

where the equilibrium conditions read

π0 = p,

ψ1,0 = p+ cMlocMrefu,

ψ2,0 = p− cMlocMrefu.

(A.4)

Using (A.3) and (A.4) in (A.2), to first oder of the relaxation parameter ε there is

π
ψ1

ψ2

=
=
=

p
p+ cMlocMrefu
p− cMlocMrefu

−
−
−

ε(pt + upx + α2

ρ ux)

ε(pt + (u+ c
ρMlocMref

)px + cMlocMref (ut + (u+ c
ρMlocMref

)ux))

ε(pt + (u− c
ρMlocMref

)px − cMlocMref (ut + (u− c
ρMlocMref

)ux))

.

(A.5)

Using the conservation of mass and momentum of the original Euler system it can be
derived that
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∂p

∂ρ
|s=const = p′,

pt + upx = −ρp′ux,

ut + uux = − px
ρM2

ref

.

(A.6)

Using (A.6) in (A.5) further gives

π
ψ1

ψ2

=
=
=

p
p+ cMlocMrefu
p− cMlocMrefu

−
−
−

ε(( c
2

ρ − ρp
′)ux)

ε(( c
2

ρ − ρp
′)ux + px

c
ρMref

( 1
Mloc
−Mloc))

ε(( c
2

ρ − ρp
′)ux − px c

ρMref
( 1
Mloc
−Mloc))

. (A.7)

From the last two equations of (A.7) there is

ψ1 + ψ2

2
= p− ε((c

2

ρ
− ρp′)ux). (A.8)

Using (A.8) and the first equation of (A.7) in the momentum equation of the relaxation
system (A.1), it holds that

(ρu)t + (ρu2 +
p

M2
ref

)x = ε

(
1

ρM2
ref

(c2 − ρ2p′)ux

)
x

. (A.9)

Also replacing the relaxation pressures in the energy equation gives

Et + (u(E + p))x = ε

(
1

ρ
(c2 − ρ2p′)uux

)
x

. (A.10)

Therefore the relaxation system (A.1) admits the same subcharacteristic condition as
system (5.19), i.e.

c2 > ρ2p′. (A.11)

Now concern the equivalence of the numerical flux function. It is straightforward to
see that the homogeneous part of (A.1) admits the same waves as (5.19) . Moreover, the
relaxation variables ψ1 and ψ2 satisfy a simple transport equation. Therefore it holds that

ψ1L = ψ1L∗ = ψ1
CL

= ψ1
CR

= ψ1R∗ = pL + cMLocMrefuL,

ψ1R = pR + cMLocMrefuR,

ψ2L = pL − cMLocMrefuL,

ψ2L∗ = ψ2
CL

= ψ2
CR

= ψ2R∗ = ψ1R = pR − cMLocMrefuR.

(A.12)

Consider now the following quantity

ψ̄ =
ψ1 + ψ2

2
. (A.13)
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From (A.12) it is straightforward to compute that

ψ̄L = pL,

ψ̄L∗ = ψ̄CL = ψ̄CR = ψ̄R∗ =
pL + pR

2
+ cMLocMref (uL − uR),

ψ̄R = pR.

(A.14)

From Theorem 5.2.2 on the intermediate states of the relaxation system (5.19) it can
be seen that ψ̄ = ψ and the numerical fluxes resulting from both systems are equivalent.
Therefore the stability analysis presented here extends to the system (5.19), while in this
stability analysis, all the equations take part in deriving the subcharacteristic condition.
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Appendix B. Diffusion Matrix of the Suliciu Relaxation Scheme

Here the derivation of the diffusive form for Suliciu Relaxation scheme is concerned. The
aim is to represent the interface flux f∗ in the following form

f∗ =
fi(Ui) + fi+1(Ui+1)

2
−D(Ui+1 − Ui), (B.1)

where D is called the diffusion matrix for the numerical scheme. This can be done for the
Roe scheme. The aim is to show, why this is more difficult for the Suliciu relaxation scheme.

In the derivation of the diffusive form , first some steps are taken, which are the same for
the Roe and the Suliciu relaxation scheme. Assume that the approximate Riemann solver
can be written in the form given in (2.30)

W(t, x) =



WL if x
t < λ̄1,

W1 if λ̄1 <
x
t < λ̄2,

...,

Wk−1 if λ̄K−1 <
x
t < λ̄K ,

UR if λ̄K < x
t .

(B.2)

Both the Roe and the Suliciu relaxation scheme satisfy this form. The idea in the Roe
scheme is to linearize the conservation law in the following way

ut +A |Roe ux = 0, (B.3)

where A |Roe= f ′(u |Roe). So A is the flux Jacobian evaluated at a specific value u |Roe,
which depends on the left and right states of the Riemann problem, denoting this by
A = A(uL, uR). The value u |Roe is chosen in such a way that the following properties hold

• Conservation property: A(uL, uR)(uR − uL) = f(uR)− f(uL)

• Consistency: A(u, u) = f(u)

• A(uL, uR) is hyperbolic

and the Riemann problem is then solved exactly for the modified system (B.3). The similar
property holds true for the relaxation procedure, where a modified system is proposed for
which the Riemann problem can be solved exactly. So in both cases, the discontinuities in
the model (B.2) satisfy the Rankine Hugoniot condition and it holds that

λk(uk − uk−1) = f(uk)− f(uk−1). (B.4)

Summing up the Rankine Hugoniout relations once from the left and from the right up to
the interface value gives the following formulas

f∗ = f(uL) +
∑
λk<0

λi(uk − uk−1),

f∗ = f(uR)−
∑
λk>0

λi(uk − uk−1).
(B.5)
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Summing and averaging these two equations gives the following form

f∗ =
f(uL) + f(uR)

2
− 1

2

∑
k

| λk | (uk − uk−1). (B.6)

From here on, the derivations for the Roe scheme and the Suliciu relaxation are different.

Roe Scheme

In the case of a Roe scheme, the system under consideration is linear and one can express
the state differences on the right side as a scalar multiple of the corresponding eigenvectors.
With rk being the respective eigenvector, there is

uk − uk−1 = αkrk. (B.7)

Inserting (B.7) in (B.6) gives

f∗ =
f(uL) + f(uR)

2
− 1

2

∑
k

| λk | αkrk. (B.8)

Since the matrix A is hyperbolic, it admits a full set of eigenvectors and (B.8) can be
expanded by cleverly multiplying with an identity to get

f∗ =
f(uL) + f(uR)

2
− 1

2

∑
k

RΛR−1αkrk, (B.9)

where R is the matrix with all the eigenvectors of A and Λ is a diagonal matrix with the
absolute values of the eigenvalues. Using (B.7) again, it is clear that the sum telescopes and
the interface flux can be put into the form (B.1) as

f∗ =
f(uL) + f(uR)

2
− 1

2
RΛR−1(uR − uL). (B.10)

Suliciu Relaxation

Since the Suliciu relaxation gives not for a linear, but a linear degenerate system, expressing
the jump at the discontinuities by some multiple of an eigenvector as in (B.7) is not nec-
essarily true. Recall that the shock curves needed to determine the intermediate states are
tangent to the eigenvectors. However, in the linear case the eigenvectors do not depend on
the solution, resulting in linear shock curves in phase space. In contrast, in the case of the
Suliciu relaxation, one first has to show, if the respective eigenvector is in fact constant along
a shock curve. Computing the eigenvectors to the flux Jacobian of the Suliciu relaxation
gives that

λ = u± c

ρ
the eigenvectors read


1

u± c
ρ

π±cu+ρ(e+u2

2
)

c2+πρ

π + c2

ρ

 , (B.11)
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and for

λ = u the eigenvectors read


1
u
0
π

 ,


0
0
1
0

 . (B.12)

For the eigenvalue u, the vales u and π are actually Riemann invariants. Therefore, for
this discontinuity, the respective eigenvectors are constant along the shock curve and the
shock curve is a linear function in phase space. The jump in the dependent variables can be
expressed as a scalar multiple of the eigenvectors evaluated at uC and πC .

For discontinuities moving with the eigenvalue u ± c
ρ , the values u ± c

ρ and π + c2

ρ are
Riemann invariants for the respective discontinuities. However, the entries in the energy

component InE :=
π±cu+ρ(e+u2

2
)

c2+πρ
can not be expressed in terms of Riemann invariants.

Therefore the shock curve is in general not linear in phase space. However, lets write the
shock curves from the states uR,L, denoted as ηR,L, as a parameterized curve in phase space
as

ηR,L = η(θ, uR,L)R,L. (B.13)

Since the shock curve is tangent to its eigenvector and the eigenvector is constant in all
but one component it can be rewritten as

ηθR,L = UR,L +


θ

θ(uR,L ± c
ρR,L

)

g(θ)

θ(πR,L + c2

ρR,L
)

 . (B.14)

Therefore the shock curve is linear in all but one component. In the end, the aim is to
express the jump in the dependent variables in terms of some vector. The eigenvectors are
a good choice to express these jumps since, if the system is hyperbolic, they span the whole
phase space and the matrix R−1 in (B.9) is well defined. Since the shock curve is only in
one component not linear, the jump might still be expressed in terms of the eigenvector. To
see this, rescale the parameter θ such that

η(0, uR,L)R,L = uR,L and η(1, uR,L)R,L = uCR,CL . (B.15)

With this the following relations hold

uR − uCR = η(0, uR)R − η(1, uR)R and uL − uCL = η(0, uL)L − η(1, uL)L. (B.16)

The jump in the dependent variables is now expressed as a difference of a vector valued
function. If η would be a scalar function, the mean value theorem would connect these
differences to the derivative of η with respect to θ. The derivative in turn is a scalar multiple
of the respective eigenvector. However, all but one component of η is linear and the mean
value theorem can be applied to the non-linear component to get
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∃θ1 η(0, uR)R − η(1, uR)R = ∇θη(θ1, uR)R,

∃θ2 η(0, uL)L − η(1, uL)L = ∇θη(θ2, uL)L.
(B.17)

Moreover, since the shock curve η is an integral curve of the respective eigenvector, the
following relations hold

∇θη(θ1, uR)R = r+(η(θ1, uR)R) and ∇θη(θ2, uL)L = r−(η(θ2, uL)L), (B.18)

where r± are scalar multiples of the eigenvectors in (B.11). Therefore the jump in the
dependent variables can be expressed as

uR − uCR = αR


1

uR + c
ρR

InE(η(θ1, uR)R)

πR + c2

ρR

 and uL − uCL = αL


1

uL + c
ρL

InE(η(θ2, uL)L)

πL + c2

ρL

 .

(B.19)

This implies that the jumps at all the discontinuities can be expressed by scalar multiples
of the respective eigenvectors, where the state on which the eigenvector is evaluated might
only be know implicitly. In practice, the values InE(η(θ1, uR)R) and InE(η(θ2, uL)L) can
be computed numerically as

InE(η(θ1, uR)R) =
InE(uCR)− InE(uR)

ECR − ER
. (B.20)

After all this, it is shown that the reformulation from (B.6) to (B.8) can also be done in
the case of the Suliciu relaxation, i.e. it holds that

uk − uk−1 = αkrk, (B.21)

where the vectors are defined by the above calculations. Therefore, inserting (B.21) in
(B.6) gives

f∗ =
f(uL) + f(uR)

2
− 1

2

∑
k

| λk | αkrk. (B.22)

Now define the matrix of eigenvectors R as follows

R =


1 0 1 1
uC 0 uC − c

ρ
CL

uC + c
ρ
CR

0 1 InEL InER
πC 0 πC + c2

ρ
CL

πC + c2

ρ
CR

 , (B.23)

which is composed of the respective eigenvectors evaluated at the respective states. In
order to mimic the step (B.8) to (B.9), it remains to check if R−1 is well-defined. The
Suliciu relaxation system is hyperbolic and therefore the eigenvectors are linear independent
if evaluated at the same state. However, the eigenvectors in (B.23) are evaluated at different
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states and therefore it has to be checked directly if R is invertible.

det(R) =

∣∣∣∣∣∣∣∣∣
1 0 1 1
uC 0 uC − c

ρ
CL

uC + c
ρ
CR

0 1 InEL InER
πC 0 πC + c2

ρ
CL

πC + c2

ρ
CR

∣∣∣∣∣∣∣∣∣ =
2c3

ρCLρCR
. (B.24)

Therefore if c, ρCL , ρCR 6= 0, R is invertible.
Next define the diagonal matrix of the eigenvalues Λ as

Λ =


| uC | 0 0 0

0 | uC | 0 0
0 0 | uC − c

ρ
CL
| 0

0 0 0 | uC + c
ρ
CL
|

 . (B.25)

With this, the interface flux can be further rewritten into the form

f∗ =
f(uL) + f(uR)

2
− 1

2

∑
k

RΛR−1αkrk. (B.26)

Using again (B.21) and realizing that the sum telescopes, the interface flux for the Suliciu
relaxation can be rewritten as

f∗ =
f(uL) + f(uR)

2
− 1

2
RΛR−1(UR − UL), (B.27)

with the respective definitions of the matrices.
Since the derivation of the diffusive form of the numerical flux involves the use of the mean

value theorem, a similar analysis of the diffusion matrix as in the case of the Roe scheme as
in [162],[168] and [132] will be very difficult.
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Appendix C. Vortices in a Gravitational Field

The aim is to derive stationary vortices in a gravitational field. Consider the Euler equations
in polar coordinates with an axisymmetric gravitational potential Φ(r)

ρ
ρu
ρv
E


t

+
1

r


rρu

r(ρu2 + p
M2 )

rρuv
ru(E + p)


r

+
1

r


ρv
ρuv

(ρv2 + p
M2 )

v(E + p)


φ

=


0

ρv2+p
r − ρ Φr

Fr2
ρvu
−r

−ρu2 M2

Fr2 Φr

 .

The vortices are considered to have the following properties:

• Axisymmetric : Uφ = 0,

• Stationary : Ut = 0,

• No flow along the radius : u = 0.

Therefore the above equations reduce to the following form

1

rM2
(rp)r =

ρv2 + p
M2

r
− ρ Φr

Fr2
,

and after further simplification there is

pr
M2

= ρ
v2

r
− ρ Φr

Fr2
. (C.1)

In the following, two different ways to integrate (C.1) are suggested. One on top of a fixed
density distribution and one on top of a fixed temperature distribution.

Vortices on top of a fixed density distribution

Make the assumption for the density to have a distribution according to an isothermal
atmosphere. In the spirit of the original Gresho vortex, the additional pressure gradient to
balance the centrifugal force is computed by adjusting the temperature profile accordingly.

In the case of an ideal gas law, an isothermal distribution of the density is given by

ρ = exp(−M
2

Fr2

Φ(r)

RT
).

Therefore (C.1) can be rewritten as

pr = M2exp(−M
2

Fr2

Φ(r)

RT
)(
v2

r
− Φr

Fr2
). (C.2)

Now, make the Ansatz for the pressure distribution and a function h(r), such that

p(r) = RT exp(−M
2

Fr2

Φ(r)

RT
) +M2 exp(

M2

Fr2
h(r)) + C, (C.3)

with the convenient choice for C to be

C = −M2 exp(
M2

Fr2
h(0)). (C.4)
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Take the derivative of (C.3) to get

p(r)r = exp(−M
2

Fr2

Φ(r)

RT
)(−M

2

Fr2
Φ(r)r) +M2 exp(

M2

Fr2
h(r))

M2

Fr2
h(r)r. (C.5)

Using (C.2) and (C.5) gives then a relation of the angular velocity with respect to the
function h(r) as

v = ±M
Fr

√
r exp(

M2

Fr2
(
Φ(r)

RT
+ h(r)))h(r)r. (C.6)

Therefore, the function h has to satisfy the following compatibility condition

hr ≥ 0. (C.7)

Next the choice of a velocity profile with respect to the function h(r) is discussed. Choose
hr as a piecewise linear continuous function, i.e.

h(r)r =


0 if r ≤ r0,

a0,1 + a1,1r if r0 ≤ r ≤ r1,

a0,2 + a1,2r if r1 ≤ r ≤ r2,

0 if r2 ≤ r,

(C.8)

and determine the parameters by defining

h(r1)r = h̄ ≥ 0. (C.9)

Therefore there is

a0,1 = − r0h̄

r1 − r0
a1,1 =

h̄

r1 − r0
,

a0,2 = − r2h̄

r1 − r2
a1,2 =

h̄

r1 − r2
.

To compute the density and pressure distribution, the integral of h(r) has to be evaluated.
For this the primitive is given by

h(r) = a0,ir +
a1,i

2
r2 + C, (C.10)

and the definite integral is given in the following form

h(r) =


0 if r ≤ r0,

a0,1r +
a1,1

2 r2 − C1 if r0 ≤ r ≤ r1,

a0,2r +
a1,2

2 r2 − C1 + C2 − C3 if r1 ≤ r ≤ r2,

C4 − C1 + C2 − C3 if r2 ≤ r,

(C.11)

where
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C1 = a0,1r0 +
a1,1

2
r2

0 C2 = a0,1r1 +
a1,1

2
r2

1,

C3 = a0,2r1 +
a1,2

2
r2

1 C4 = a0,2r2 +
a1,2

2
r2

2.

Finally, the above definitions give a non-isothermal atmosphere if r > r2. To cure this,
compute the temperature from the above definitions at r2 and integrate the isothermal
atmosphere with respect to this temperature. Therefore define the inner temperature, with
which the density profile is integrated up to r2 by T1, and the temperature from there on as
T2. The vortex is determined as

ρ(r) =

{
exp(−M2

Fr2
Φ(r)
RT1

) if r ≤ r2,

exp(−M2

Fr2
Φ(r2)
R ( 1

T1
− 1

T2
)) exp(−M2

Fr2
Φ(r)
RT2

) if r > r2.
(C.12)

p(r) =

{
RT1 exp(−M2

Fr2
Φ(r)
RT1

) +M2 exp(M
2

Fr2h(r)) + C if r ≤ r2,

RT2ρ(r) if r > r2.
(C.13)

v =
M

Fr

√
r exp(

M2

Fr2
(
Φ(r)

RT1
+ h(r)))h(r)r, (C.14)

with C = −M2 exp(M
2

Fr2h(0)) and T2 = p(r2)
Rρ(r2) .

Vortices on top of a fixed temperature distribution

Now make the assumption that p and ρ are proportional all through the vortex, i.e.

p = ρRT, (C.15)

where the temperature T is independent of r. Use (C.15) in (C.1) leads to the following
differential equation

ρr = ρ
M2

RT
(
v2

r
− Φr

Fr2
). (C.16)

(C.16) can be solved to take the following form

ρ(r) = exp(
M2

RT
F (r)), (C.17)

where

F ′(r) = f(r) =
v2

r
− Φr

Fr2
. (C.18)

What is left to define is a velocity profile that is easily integrable. The velocity can be

chosen independently from the potential Φ, as long as limr→0
v(r)2

r ≤ C. It is suggested to
choose the velocity profile as a piecewise linear continuous function, i.e.
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v(r) =


0 if r ≤ r0,

a0,1 + a1,1r if r0 ≤ r ≤ r1,

a0,2 + a1,2r if r1 ≤ r ≤ r2,

0 if r2 ≤ r.

(C.19)

The parameters can be determined by defining

v(r1) = v̄, (C.20)

and therefore there is

a0,1 = − r0v̄

r1 − r0
a1,1 =

v̄

r1 − r0
,

a0,2 = − r2v̄

r1 − r2
a1,2 =

v̄

r1 − r2
.

(C.21)

To compute the density and pressure distribution, the integral of v2

r has to be evaluated.
For this first write the piecewise definition

v2

r
=
a2

0,i

r
+ 2a0,ia1,i + a2

1,ir, (C.22)

and the primitive is therefore given by∫
v2

r
= a2

0,i log r + 2a0,ia1,ir +
a2

1,i

2
r2. (C.23)

In total there is

∫ r

0

v2

2
dr =


0 if r ≤ r0,

a2
0,1 log r + 2a0,1a1,1r +

a2
1,1

2 r2 − C1 if r0 ≤ r ≤ r1,

a2
0,2 log r + 2a0,2a1,2r +

a2
1,2

2 r2 − C1 + C2 − C3 if r1 ≤ r ≤ r2,

C4 − C1 + C2 − C3 if r2 ≤ r,

(C.24)

where the constants of integration are given by

C1 = a2
0,1 log r0 + 2a0,1a1,1r0 +

a2
1,1

2
r2

0,

C2 = a2
0,1 log r1 + 2a0,1a1,1r1 +

a2
1,1

2
r2

1,

C3 = a2
0,2 log r1 + 2a0,2a1,2r1 +

a2
1,2

2
r2

1,

C4 = a2
0,2 log r1 + 2a0,2a1,2r2 +

a2
1,2

2
r2

2.
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